CS-866 Deep Reinforcement Learning

Improved Policy-Based Learning II: Trust Region Methods

Nazar Khan
Department of Computer Science
University of the Punjab

Information Theory

Information theory studies:

- how much information is present in distributions;
- how to compare different probability distributions.

We begin with the notion of *information* of an event.

Information of an Event

The information I of observing event x from distribution p(X):

$$I(x) = -\log p(x).$$

Intuition:

- ightharpoonup High probability \Rightarrow low information gain
- ightharpoonup Low probability \Rightarrow high information gain

Extreme cases:

- $p(x) = 0 : I(x) = -\log 0 = \infty$
- $p(x) = 1 : I(x) = -\log 1 = 0$

Information and Uncertainty

Information can be interpreted as the reduction of uncertainty after observing x.

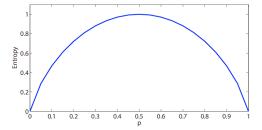


Figure: Entropy of a binary variable as a function of p(x=1).

Entropy

Entropy H[p] of a discrete distribution p(X):

$$H[p] = \mathbb{E}_{X \sim p}[I(X)]$$

$$= \mathbb{E}_{X \sim p}[-\log p(X)]$$

$$= -\sum_{x} p(x) \log p(x).$$

Units:

- ▶ log base $2 \Rightarrow$ entropy in *bits*
- ▶ log base $e \Rightarrow$ entropy in *nats*

Interpretation of Entropy

Entropy measures the uncertainty or spread of a distribution.

Example: binary variable $X \in \{0,1\}$

▶
$$p(x = 1) = 0$$
 or $1 \Rightarrow$ entropy $= 0$ (no uncertainty)

•
$$p(x=1)=0.5 \Rightarrow \text{entropy is maximal}$$

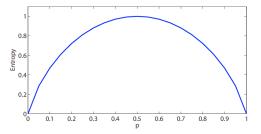


Figure: Entropy peaks at p(1) = 0.5, minimal at extremes.

Example: Computing Entropy

Example

For distribution p = [0.2, 0.3, 0.5]:

$$H[p] = -0.2 \ln 0.2 - 0.3 \ln 0.3 - 0.5 \ln 0.5$$

= 1.03 nats

Cross-Entropy

Cross-entropy between distributions p(X) and q(X):

$$H[p, q] = \mathbb{E}_{X \sim p}[-\log q(X)]$$
$$= -\sum_{x} p(x) \log q(x).$$

Connection to ML: Maximum likelihood training = minimizing cross-entropy between:

- data distribution p
- model distribution q

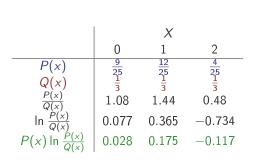
Kullback-Leibler Divergence

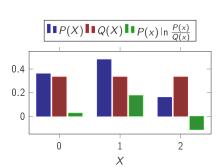
KL divergence (relative entropy) between p and q:

$$D_{\mathrm{KL}}[p||q] = \mathbb{E}_{X \sim p} \left[-\log \frac{q(X)}{p(X)} \right]$$
$$= -\sum_{x} p(x) \log \frac{q(x)}{p(x)} = \sum_{x} p(x) \log \frac{p(x)}{q(x)}.$$

- ► Interpretation: A measure of how different two distributions are.
- $D_{\mathrm{KL}}[p\|q] \geq 0$
- ▶ Not symmetric: $D_{\mathrm{KL}}[p\|q] \neq D_{\mathrm{KL}}[q\|p]$

KL-Divergence Discrete Example





$$D_{KL}(P||Q) = \sum_{x} P(x) \ln \frac{P(x)}{Q(x)}$$

$$= \frac{9}{25} \ln \frac{9/25}{1/3} + \frac{12}{25} \ln \frac{12/25}{1/3} + \frac{4}{25} \ln \frac{4/25}{1/3} = 0.0853$$

KL as Entropy + Cross-Entropy

We can rewrite KL-divergence using entropy and cross-entropy:

$$D_{\text{KL}}[p||q] = \underbrace{\sum_{x} p(x) \log p(x)}_{-H[p]} - \underbrace{\sum_{x} p(x) \log q(x)}_{-H[p,q]}$$
$$= H[p,q] - H[p].$$

Summary:

- ► Entropy: uncertainty of a single distribution
- Cross-entropy: expected code length using incorrect model
- KL-divergence: difference between distributions

These appear throughout machine learning and RL loss functions.

Trust Region Optimization

Goal: Reduce variance and instability in policy gradient updates.

Problem:

- lacktriangleright Simply increasing learning rate or step size o instability
- ► Large updates may collapse performance
- ▶ Need large improvements without deviating too far from the old policy

Trust Region idea:

- Constrain the update size during optimization
- Adaptively expand/shrink allowed region based on update quality

Trust Region Policy Optimization (TRPO)

Concept:

- Maximize improvement in policy
- Prevent policy from moving too far from previous one
- Reduce update variance and prevent collapse

Objective:

$$J(\theta) = \mathbb{E}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \cdot A_t \right]$$

Constraint (trust region):

$$\mathbb{E}_t \big[\mathsf{KL} \big(\pi_{\theta_{\mathsf{old}}} || \pi_{\theta} \big) \big] \le \delta$$

Intuition: Take the *largest safe policy step*.

TRPO Notes and Impact

Key points:

- Uses KL divergence to limit policy change
- Uses second-order optimization (complex)
- Stable and reliable, good for large problems

Applications:

- Robotic control (swimming, hopping, walking)
- Atari games

Downside: Algorithmically complex (requires second-order methods)

Implementations:

- OpenAl Spinning Up
- ► Stable Baselines

Proximal Policy Optimization (PPO)

Motivation:

- Keep benefits of TRPO
- Remove complexity (no second-order derivatives)
- Make training faster and easier

PPO Variants:

- ▶ PPO-Penalty: Penalizes KL divergence in objective
- ▶ PPO-Clip: Clipping mechanism to limit policy change

Concept: Take a large step, but **clip** if too far from old policy

PPO-Clip Objective

Clipped surrogate objective:

$$J(\theta) = \mathbb{E}_t \Big[\min(r_t(\theta) A_t, \ \mathsf{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) A_t) \Big]$$

where:

$$r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)}$$

Effect:

- lacktriangle If update too large ightarrow clipped
- Controls destructive updates without explicit trust-region compute

TRPO vs PPO

Feature	TRPO	PPO
Stability	High	High
Complexity	High (2nd order)	Low
Compute cost	High	Moderate
Constraint	Hard KL bound	Clipping / soft penalty
Use case	Research stability	Practical training default

Both are on-policy methods.

 $\begin{tabular}{lll} \textbf{Outcome} : & PPO & became standard baseline for deep RL tasks \\ \end{tabular}$