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Information Theory

Information theory studies:

I how much information is present in distributions;

I how to compare di�erent probability distributions.

We begin with the notion of information of an event.
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Information of an Event

The information I of observing event x from distribution p(X ):

I (x) = − log p(x).

Intuition:

I High probability ⇒ low information gain

I Low probability ⇒ high information gain

Extreme cases:

I p(x) = 0 : I (x) = − log 0 =∞
I p(x) = 1 : I (x) = − log 1 = 0
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Information and Uncertainty

Information can be interpreted as the reduction of uncertainty after observing
x .

Figure: Entropy of a binary variable as a function of p(x=1).
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Entropy

Entropy H[p] of a discrete distribution p(X ):

H[p] = EX∼p[I (X )]

= EX∼p[− log p(X )]

= −
∑
x

p(x) log p(x).

Units:

I log base 2 ⇒ entropy in bits

I log base e ⇒ entropy in nats
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Interpretation of Entropy

Entropy measures the uncertainty or spread of a distribution.
Example: binary variable X ∈ {0, 1}

I p(x = 1) = 0 or 1 ⇒ entropy = 0 (no uncertainty)

I p(x = 1) = 0.5 ⇒ entropy is maximal

Figure: Entropy peaks at p(1) = 0.5, minimal at extremes.
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Example: Computing Entropy

Example
For distribution p = [0.2, 0.3, 0.5]:

H[p] = −0.2 ln 0.2− 0.3 ln 0.3− 0.5 ln 0.5

= 1.03 nats
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Cross-Entropy

Cross-entropy between distributions p(X ) and q(X ):

H[p, q] = EX∼p[− log q(X )]

= −
∑
x

p(x) log q(x).

Connection to ML: Maximum likelihood training = minimizing cross-entropy
between:

I data distribution p

I model distribution q
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Kullback-Leibler Divergence

KL divergence (relative entropy) between p and q:

DKL[p‖q] = EX∼p

[
− log

q(X )

p(X )

]
= −

∑
x

p(x) log
q(x)

p(x)
=
∑
x

p(x) log
p(x)

q(x)
.

I Interpretation: A measure of how di�erent two distributions are.

I DKL[p‖q] ≥ 0

I Not symmetric: DKL[p‖q] 6= DKL[q‖p]
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KL-Divergence
Discrete Example
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KL as Entropy + Cross-Entropy

We can rewrite KL-divergence using entropy and cross-entropy:

DKL[p‖q] =
∑
x

p(x) log p(x)︸ ︷︷ ︸
−H[p]

−
∑
x

p(x) log q(x)︸ ︷︷ ︸
−H[p,q]

= H[p, q]− H[p].

Summary:

I Entropy: uncertainty of a single distribution

I Cross-entropy: expected code length using incorrect model

I KL-divergence: di�erence between distributions

These appear throughout machine learning and RL loss functions.
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Trust Region Optimization

Goal: Reduce variance and instability in policy gradient updates.

Problem:

I Simply increasing learning rate or step size → instability

I Large updates may collapse performance

I Need large improvements without deviating too far from the old policy

Trust Region idea:

I Constrain the update size during optimization

I Adaptively expand/shrink allowed region based on update quality
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Trust Region Policy Optimization (TRPO)

Concept:

I Maximize improvement in policy

I Prevent policy from moving too far from previous one

I Reduce update variance and prevent collapse

Objective:

J(θ) = Et

[
πθ(at |st)
πθold(at |st)

· At

]

Constraint (trust region):

Et

[
KL(πθold ||πθ)

]
≤ δ

Intuition: Take the largest safe policy step.
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TRPO Notes and Impact

Key points:

I Uses KL divergence to limit policy change

I Uses second-order optimization (complex)

I Stable and reliable, good for large problems

Applications:

I Robotic control (swimming, hopping, walking)

I Atari games

Downside: Algorithmically complex (requires second-order methods)

Implementations:

I OpenAI Spinning Up

I Stable Baselines
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Proximal Policy Optimization (PPO)

Motivation:

I Keep bene�ts of TRPO

I Remove complexity (no second-order derivatives)

I Make training faster and easier

PPO Variants:

I PPO-Penalty: Penalizes KL divergence in objective

I PPO-Clip: Clipping mechanism to limit policy change

Concept: Take a large step, but clip if too far from old policy
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PPO-Clip Objective

Clipped surrogate objective:

J(θ) = Et

[
min(rt(θ)At , clip(rt(θ), 1− ε, 1+ ε)At)

]
where:

rt(θ) =
πθ(at |st)
πθold(at |st)

E�ect:

I If update too large → clipped

I Controls destructive updates without explicit trust-region compute
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TRPO vs PPO

Feature TRPO PPO

Stability High High
Complexity High (2nd order) Low
Compute cost High Moderate
Constraint Hard KL bound Clipping / soft penalty
Use case Research stability Practical training default

Both are on-policy methods.

Outcome: PPO became standard baseline for deep RL tasks
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