Dept. of Computer Science Punjab University

EC331 Computer Vision Fall 2024

Quiz 1

Name:	Roll Number:
TVAIIC.	TOH Number.

- 1. For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and matrices $\mathbf{M} \in \mathbb{R}^{k \times d}$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$, prove the following derivatives.
 - (a) (2 points) $\nabla_{\mathbf{x}}(\mathbf{y}^T\mathbf{x}) = \nabla_{\mathbf{x}}(\mathbf{x}^T\mathbf{y}) = \mathbf{y}$

Hint: You may want to write out the complete expression for the dot-product $\mathbf{x}^T \mathbf{y}$. This expression will be a scalar value. You will need to take derivatives of this scalar value with respect to every element of \mathbf{x} .

(b) (3 points) $\nabla_{\mathbf{x}}(\mathbf{M}\mathbf{x}) = \mathbf{M}^T$

Hint: You may denote the *i*-th row of matrix \mathbf{M} by \mathbf{m}_i^T . Then use part (a) to write the derivative of the expression $\mathbf{m}_i^T \mathbf{x}$.

(c) (3 points) $\nabla_{\mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x}) = (\mathbf{A} + \mathbf{A}^T)\mathbf{x}$

Hint: You may use the product rule of differentiation. When applied to vectors, the rule states that

$$abla_{\mathbf{x}}\left(\mathbf{u}^{T}\mathbf{v}\right) =
abla_{\mathbf{x}}\left(\mathbf{u}\right)\mathbf{v} +
abla_{\mathbf{x}}\left(\mathbf{v}\right)\mathbf{u}$$

where both \mathbf{u} and \mathbf{v} are functions of \mathbf{x} . You may also use the derivative from part (b).

(d) (2 points) $\nabla_{\mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x}) = 2\mathbf{A} \mathbf{x}$ when \mathbf{A} is symmetric