Dept.	of Computer Science	е
Punia	University	

EC331 Computer Vision Fall 2024

Quiz 2

Nar	ne: Roll Number:
1. (5	points) In the binary cross-entropy function
	$J(\theta) = -\frac{1}{N} \sum_{n=1}^{N} y_n \ln(\hat{y}_n) + (1 - y_n) \ln(1 - \hat{y}_n) $ (1)
(a	heta is
(b	N is
(c	y_n is
(d)	\hat{y}_n is
(e	the expression inside the sum selects the -ve log probability of
2. (5)	description must include i) the number of neural networks for the following problems. You description must include i) the number of neurons, and ii) the type of activation functions i. (1 point) Classification of images of chairs, sofas and tables.
	ii. (1 point) Learning a vector function $\mathbf{f} \in \mathbb{R}^{13}$.
(b	(3 points) The softmax function for K inputs a_1, a_2, \ldots, a_K is written as $y_k = \frac{e^{a_k}}{\sum_{j=1}^K e^{a_j}}$
	Prove that the softmax function outputs multiclass probabilities. You must show that
	1. each output $y_k \geq 0$,
	2. each output $y_k \leq 1$, and
	3. sum of outputs y_1, \ldots, y_K is exactly 1.