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What is Reinforcement Learning?

A framework for decision-making problems.

Agent interacts with an environment to maximize cumulative rewards.

Key elements:

States (s)
Actions (a)
Rewards (r)
Policy (π)
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Applications of Reinforcement Learning

Robotics: Robot navigation, manipulation tasks.

Games: AlphaGo, Atari games.

Finance: Portfolio optimization.

Autonomous vehicles: Driving policies.

Robotics
Navigation,

manipulation

Games
AlphaGo, Atari

Finance
Portfolio optimization

Autonomous
Vehicles

Driving policies
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Q-Learning Overview

Model-free reinforcement learning algorithm.

Learns the optimal action-value function Q(s, a):

Q(s, a) = E[r + γmax
a′

Q(s ′, a′)]

Update rule:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]
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Challenges in Q-Learning

Inefficient for high-dimensional state spaces.

Requires a large Q-table for discrete states and actions.

Cannot directly handle continuous state spaces.
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What is Deep Q-Learning?

Combines Q-Learning with deep neural networks.
Approximates Q(s, a) using a neural network.
Outputs Q-values for all actions given a state.
Overcomes limitations of tabular Q-Learning.

From Maffettone et al. (2021)
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DQL Network Architecture

Input: State vector.

Hidden layers: Fully connected layers with ReLU activation.

Output: Q-values for all possible actions.

State
vector

Hidden
layer 1

Hidden
layer 2

Q-values
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Replay Buffer

Stores past experiences: (s, a, r , s ′, done).

Breaks temporal correlations in training data.

Enables efficient reuse of experiences.

Samples mini-batches for training.
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Target Network

Separate network used to calculate target Q-values.

Stabilizes training by reducing correlations in updates.

Periodically synchronized with the main Q-network.
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DQL Training Steps

1 Initialize Q-network and target network.

2 Initialize replay buffer.
3 For each episode:

1 Reset the environment.
2 Select actions using ε-greedy policy.
3 Store transitions in replay buffer.
4 Train Q-network using mini-batches from buffer.
5 Periodically update target network.
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Loss Function

Mean Squared Error (MSE):

Loss =
1

N

N∑
i=1

(
Q(s, a)− target q

)2
Target Q-value:

target q = r + γmax
a′

Qtarget(s ′, a′)
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Why Do We Need a Target Network?

The target network is introduced to improve stability and convergence in
Deep Q-Learning.

Without it, the learning process can become unstable and diverge.
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Stabilizing Updates

Q-learning aims to minimize the difference between current Q-values and
target Q-values.

The target Q-value typically comes from the Bellman equation:

Q(st , at) = rt + γmax
a′

Q(st+1, a
′)

Using the same Q-network to generate both the predictions and targets
can lead to instability.
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Decoupling Target and Learning Network

The target network is a separate copy of the Q-network.

The main Q-network generates predictions, while the target network
generates the target Q-values.

The target network is updated less frequently (e.g., every few thousand
steps).

This decoupling improves stability in learning.
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Slow Target Network Updates

The target network is updated at regular intervals, not after every
training step.

This slow update helps avoid instability from rapidly changing targets.

It allows the main Q-network to adjust to a more stable target.
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Addressing Temporal Difference (TD) Error

Q-Learning is based on Temporal Difference (TD) learning.

TD learning updates use the difference between current Q-values and the
target.

Since the target comes from some previous version of the Q-network, this
difference is called TD Error.

If the target is rapidly changing, the TD error may become large and
destabilize learning.

The target network helps reduce this by providing a stable target for a
longer period.



RL QL DQL DQL Training Process Why Target Network? Why Replay Buffer? Enhancements Conclusion

Why Do We Need a Replay Buffer?

The replay buffer is a key component of Deep Q-Learning (DQN).

It helps improve the learning efficiency and stability of the agent.

Without the replay buffer, training could be less stable and slower.

Agent Environment

Replay Buffer

Q-Network

State, Action

Reward, Next State

Sample Experience
Update Q-Function
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Stabilizing Training with Experience Replay

In Deep Q-Learning, an agent learns from experiences: state, action,
reward, next state.

Directly updating the Q-network from each experience may introduce
correlations between consecutive samples.

These correlations can harm the learning process and lead to unstable
updates.
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Experience Replay

The replay buffer stores past experiences (state, action, reward, next
state) in a buffer.

Randomly sampling experiences from this buffer helps break correlations
between consecutive samples.

This improves the stability of the updates by ensuring that the training
data is more diverse.
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Reducing Temporal Correlation

Consecutive experiences in reinforcement learning are temporally
correlated.

If we use these correlated samples directly, the Q-network might overfit
to recent experiences.

By sampling randomly from the replay buffer, we reduce the impact of
temporal correlation, leading to better convergence.
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Stabilizing Q-Function Updates

The Q-function is updated based on Temporal Difference (TD) errors.

If the agent updates its Q-values using correlated data, the TD error can
become large, making learning unstable.

The replay buffer mitigates this by providing a diverse set of experiences,
leading to more stable TD errors and smoother learning.
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Efficiency in Learning

The replay buffer allows the agent to reuse past experiences, improving
sample efficiency.

Without the buffer, each experience could be used only once, limiting the
amount of learning from each sample.

By storing experiences and sampling them multiple times, the agent can
learn more efficiently.
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How It Works in Practice

The agent collects experiences and stores them in a buffer.

At each training step, a mini-batch of experiences is sampled randomly
from the buffer.

This mini-batch is used to update the Q-network, helping the agent
improve its policy.
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Replay Buffer Summary

The replay buffer stabilizes training by breaking correlations between
consecutive experiences.

It improves the efficiency of learning by allowing for the reuse of past
experiences.

By smoothing out updates, it helps the agent converge more reliably and
quickly.



RL QL DQL DQL Training Process Why Target Network? Why Replay Buffer? Enhancements Conclusion

Enhancements to DQL

Double DQN: Reduces overestimation bias.

Dueling DQN: Separates state value and action advantage.

Prioritized Experience Replay: Samples important transitions more
frequently.
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Summary

Deep Q-Learning integrates deep learning with reinforcement learning.

Uses neural networks to approximate Q-values.

Replay buffers and target networks stabilize training.

Foundation for advanced RL algorithms like Double DQN and DDPG.
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