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What is Reinforcement Learning?

RL is a learning paradigm where an agent learns by interacting with an
environment.

Goal: Maximize cumulative reward over time.
Key components:

Agent: Learns and takes actions.
Environment: Provides feedback through states and rewards.
Policy: Maps states to actions.
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CartPole Environment

Objective: Balance a pole on a moving cart by applying left or right
forces.

A training episode ends when:

Pole angle exceeds a threshold.
Cart moves out of bounds.

Rewards:

+1 for each time step the pole is balanced.
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What is Q-Learning?

Model-free RL algorithm.

Uses a Q-table to estimate the value of state-action pairs (s, a).

Q(s, a) refers to the quality of taking action a in state s in terms of
expected future rewards.

A Q-table for a grid world with 3 states (S1, S2, S3) and 4 actions (up,
down, left, right):

Up Down Left Right
S1 0.5 0.2 -0.1 0.0
S2 0.0 0.3 0.1 0.4
S3 -0.2 0.1 0.2 0.5

In state S1, best action is to move up.
In states S2 and S3, best action is to move right.



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

Q-Learning for CartPole Balancing

Modified from Maffettone et al. 2021.
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The Q-Update Rule

Q-learning uses the following update rule iteratively:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]
Q(s, a) represents the current estimate of the Q-value for taking action a
in state s.

s is the current state of the agent in the environment.

a is the action chosen by the agent in the current state s.
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The Q-Update Rule

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]
α is the learning rate (a scalar value between 0 and 1).

Controls how much the new information r + γmaxa′ Q(s ′, a′) influences
the Q-value update.
Smaller α results in slower updates, preserving past knowledge.

r is the immediate reward received after taking action a in state s.

γ is the discount factor (a scalar value between 0 and 1).

Determines the importance of future rewards.
A value close to 0 makes the agent short-sighted (focuses only on
immediate rewards), while a value closer to 1 considers long-term rewards.
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The Q-Update Rule

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]
s ′ is the next state after taking action a in state s.

maxa′ Q(s ′, a′) is the maximum Q-value of the next state s ′, considering
all possible actions a′.

This represents the agent’s estimate of the best possible future reward it
can achieve from the next state s ′.

r + γmaxa′ Q(s ′, a′) represents the ”target” Q-value, which combines the
immediate reward r and the discounted estimate of future rewards.
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The Q-Update Rule

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]
is equivalent to

Q(s, a)← (1− α)Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)

]
So updated Q-value is a weighted average of the old Q-value Q(s, a) and
the target Q-value r + γmaxa′ Q(s ′, a′).

This update process adjusts the Q-values iteratively, helping the agent
improve its policy over time by reinforcing actions that lead to higher
rewards.
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Key Functions in Q-Learning

Discretize States: Bucket continuous states into discrete bins.

Select Action: ε-greedy policy.

ε chance of taking random action (Exploration)
1− ε chance of taking action with highest Q-value (Exploitation)

Update Q-Table: Apply Q-learning update formula.

Decay ε: Gradually reduce exploration.
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Training the Agent

Initialize Q-table with zeros.

For each episode:

Reset environment.
Take actions, observe rewards, and update Q-table.

Decay ε after each episode.

state , _ = env.reset ()

state = agent.discretize(state)

for t in range(max_steps ):

action = agent.select_action(state)

next_state , reward , done , _, _ = env.step(action)

next_state = agent.discretize(next_state)

agent.update_q_table(state , action , reward , ...

next_state , done)

state = next_state

if done:

break
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Conclusion

Q-learning enables agents to learn effective policies through trial and
error.

Key challenges:

Balancing exploration and exploitation.
Tuning hyperparameters.
Agent needs to be deployed in and learn from the live environment or its
digital twin.

Extendable to more complex environments.
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