EC332 Machine Learning

Reinforcement Learning: Balancing a CartPole with Q-Learning

Nazar Khan
Department of Computer Science
University of the Punjab



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

What is Reinforcement Learning?

@ RL is a learning paradigm where an agent learns by interacting with an
environment.

@ Goal: Maximize cumulative reward over time.

o Key components:
o Agent: Learns and takes actions.
o Environment: Provides feedback through states and rewards.
o Policy: Maps states to actions.

Reinforcement Learning Loop

decides X affects
Agent Action a; Environment
observes
learns from returns, )
gives
State s;
Reward r¢




Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

CartPole Environment

@ Objective: Balance a pole on a moving cart by applying left or right
forces.

@ A training episode ends when:

o Pole angle exceeds a threshold.
o Cart moves out of bounds.

@ Rewards:
o +1 for each time step the pole is balanced.

o/l &
S

Q

)
left ' right

L L
Cart




Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

What is Q-Learning?

@ Model-free RL algorithm.

@ Uses a Q-table to estimate the value of state-action pairs (s, a).

o Q(s, a) refers to the quality of taking action a in state s in terms of
expected future rewards.

@ A Q-table for a grid world with 3 states (S1, S2, S3) and 4 actions (up,
down, left, right):

Up Down Left Right
S1 05 0.2 -0.1 0.0
S2 0.0 0.3 0.1 0.4
S3 -02 01 0.2 0.5

In state S1, best action is to move up.
In states S2 and S3, best action is to move right.




Introduction to Reinforcement Learning

Environment: CartPole

Q-Learning

Implementation

Q-Learning for CartPole Balancing

State
[x, %, 6,0]

Environment

Reward

4+ —

A

Action

Y

Agent

Q-Update Rule

Q-Table

Modified from Maffettone et al. 2021.




Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

The Q-Update Rule

Q-learning uses the following update rule iteratively:

Q(s,a) « Q(s,a) + a[r+~ max Q(s',d) — Q(s, a)]

@ Q(s, a) represents the current estimate of the Q-value for taking action a
in state s.

@ s is the current state of the agent in the environment.

@ ais the action chosen by the agent in the current state s.




Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

The Q-Update Rule

Q(s,a) « Q(s,a) + afr+~ max Q(s',d) — Q(s, a)]

@ « is the learning rate (a scalar value between 0 and 1).

o Controls how much the new information r + vmax, Q(s’, a") influences
the Q-value update.
o Smaller « results in slower updates, preserving past knowledge.

@ r is the immediate reward received after taking action a in state s.
@ + is the discount factor (a scalar value between 0 and 1).

o Determines the importance of future rewards.
o A value close to 0 makes the agent short-sighted (focuses only on
immediate rewards), while a value closer to 1 considers long-term rewards.




Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

The Q-Update Rule

Q(s,a) « Q(s,a) + afr+~ max Q(s',d) — Q(s, a)]

@ s’ is the next state after taking action a in state s.

@ maxy Q(s',a’) is the maximum Q-value of the next state s’, considering
all possible actions a'.

o This represents the agent's estimate of the best possible future reward it
can achieve from the next state s’.
@ r+ymaxy Q(s, ") represents the "target” Q-value, which combines the
immediate reward r and the discounted estimate of future rewards.




Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

The Q-Update Rule

Q(s,a) « Q(s,a) + afr+~ max Q(s',d) — Q(s, a)]

is equivalent to

Q(s,a) + (1 —)Q(s,a) + a[r+~ max Q(s', )]

@ So updated Q-value is a weighted average of the old Q-value Q(s, a) and
the target Q-value r + vy maxy Q(s', a).
@ This update process adjusts the Q-values iteratively, helping the agent

improve its policy over time by reinforcing actions that lead to higher
rewards.




Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

Key Functions in Q-Learning

@ Discretize States: Bucket continuous states into discrete bins.

@ Select Action: e-greedy policy.

e ¢ chance of taking random action (Exploration)
o 1 — e chance of taking action with highest Q-value (Exploitation)

o Update Q-Table: Apply Q-learning update formula.

@ Decay e: Gradually reduce exploration.




Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

Training the Agent

o Initialize Q-table with zeros.
@ For each episode:

o Reset environment.
o Take actions, observe rewards, and update Q-table.

@ Decay € after each episode.

state, _ = env.reset ()

state = agent.discretize(state)

for t in range (max_steps):
action = agent.select_action(state)
next_state, reward, done, _, _ = env.step(action)
next_state = agent.discretize(next_state)

agent .update_q_table(state, action, reward,
next_state, done)
state = next_state
if done:
break




Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

Conclusion

@ Q-learning enables agents to learn effective policies through trial and
error.

o Key challenges:

o Balancing exploration and exploitation.

e Tuning hyperparameters.

o Agent needs to be deployed in and learn from the /ive environment or its
digital twin.

@ Extendable to more complex environments.




	Introduction to Reinforcement Learning
	Environment: CartPole
	Q-Learning
	Implementation

