
EC332 Machine Learning

Reinforcement Learning: Balancing a CartPole with Q-Learning

Nazar Khan
Department of Computer Science

University of the Punjab



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

What is Reinforcement Learning?

RL is a learning paradigm where an agent learns by interacting with an
environment.

Goal: Maximize cumulative reward over time.
Key components:

Agent: Learns and takes actions.
Environment: Provides feedback through states and rewards.
Policy: Maps states to actions.

Agent Action at Environment

Reward rt
State st

decides affects

gives
returnsobserves

learns from

Reinforcement Learning Loop



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

CartPole Environment

Objective: Balance a pole on a moving cart by applying left or right
forces.

A training episode ends when:

Pole angle exceeds a threshold.
Cart moves out of bounds.

Rewards:

+1 for each time step the pole is balanced.

g

Fleft Fright

Cart

P
ol

e



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

What is Q-Learning?

Model-free RL algorithm.

Uses a Q-table to estimate the value of state-action pairs (s, a).

Q(s, a) refers to the quality of taking action a in state s in terms of
expected future rewards.

A Q-table for a grid world with 3 states (S1, S2, S3) and 4 actions (up,
down, left, right):

Up Down Left Right
S1 0.5 0.2 -0.1 0.0
S2 0.0 0.3 0.1 0.4
S3 -0.2 0.1 0.2 0.5

In state S1, best action is to move up.
In states S2 and S3, best action is to move right.



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

Q-Learning for CartPole Balancing

Modified from Maffettone et al. 2021.



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

The Q-Update Rule

Q-learning uses the following update rule iteratively:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]
Q(s, a) represents the current estimate of the Q-value for taking action a
in state s.

s is the current state of the agent in the environment.

a is the action chosen by the agent in the current state s.



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

The Q-Update Rule

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]
α is the learning rate (a scalar value between 0 and 1).

Controls how much the new information r + γmaxa′ Q(s ′, a′) influences
the Q-value update.
Smaller α results in slower updates, preserving past knowledge.

r is the immediate reward received after taking action a in state s.

γ is the discount factor (a scalar value between 0 and 1).

Determines the importance of future rewards.
A value close to 0 makes the agent short-sighted (focuses only on
immediate rewards), while a value closer to 1 considers long-term rewards.



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

The Q-Update Rule

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]
s ′ is the next state after taking action a in state s.

maxa′ Q(s ′, a′) is the maximum Q-value of the next state s ′, considering
all possible actions a′.

This represents the agent’s estimate of the best possible future reward it
can achieve from the next state s ′.

r + γmaxa′ Q(s ′, a′) represents the ”target” Q-value, which combines the
immediate reward r and the discounted estimate of future rewards.



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

The Q-Update Rule

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]
is equivalent to

Q(s, a)← (1− α)Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)

]
So updated Q-value is a weighted average of the old Q-value Q(s, a) and
the target Q-value r + γmaxa′ Q(s ′, a′).

This update process adjusts the Q-values iteratively, helping the agent
improve its policy over time by reinforcing actions that lead to higher
rewards.



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

Key Functions in Q-Learning

Discretize States: Bucket continuous states into discrete bins.

Select Action: ε-greedy policy.

ε chance of taking random action (Exploration)
1− ε chance of taking action with highest Q-value (Exploitation)

Update Q-Table: Apply Q-learning update formula.

Decay ε: Gradually reduce exploration.



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

Training the Agent

Initialize Q-table with zeros.

For each episode:

Reset environment.
Take actions, observe rewards, and update Q-table.

Decay ε after each episode.

state , _ = env.reset ()

state = agent.discretize(state)

for t in range(max_steps ):

action = agent.select_action(state)

next_state , reward , done , _, _ = env.step(action)

next_state = agent.discretize(next_state)

agent.update_q_table(state , action , reward , ...

next_state , done)

state = next_state

if done:

break



Introduction to Reinforcement Learning Environment: CartPole Q-Learning Implementation

Conclusion

Q-learning enables agents to learn effective policies through trial and
error.

Key challenges:

Balancing exploration and exploitation.
Tuning hyperparameters.
Agent needs to be deployed in and learn from the live environment or its
digital twin.

Extendable to more complex environments.


	Introduction to Reinforcement Learning
	Environment: CartPole
	Q-Learning
	Implementation

