
EC332 Machine Learning

Reinforcement Learning: Derivation of Update Rules

Nazar Khan
Department of Computer Science

University of the Punjab



Bandit Problems



Bandit Problems Defining the Problem Iterative Update Rule Explanation of Variables Conclusion

What is a Bandit Problem?

A bandit problem is a simplified reinforcement learning problem.

At each time step:
1 You choose one action from a set of actions {a1, a2, . . . , an}.
2 You receive a reward rt based on the chosen action.

Goal: Maximize the total reward over time by learning the best action.

Agent Action

Reward

Environment
Select

O
u

tcom
e

Feedback

Act

Observe



Bandit Problems Defining the Problem Iterative Update Rule Explanation of Variables Conclusion

Introduction to Bandit Problems

The term bandit problem originates from the analogy to a one-armed
bandit.

A one-armed bandit is a colloquial term for a slot machine used for
gambling.

Slot machines are designed to “steal” money while offering a chance of
reward.



Bandit Problems Defining the Problem Iterative Update Rule Explanation of Variables Conclusion

What Is a One-Armed Bandit?

A slot machine with a single lever (or “arm”) that a player can pull.

Known as a “bandit” because it often takes more money than it gives.

Offers the player an uncertain reward based on fixed probabilities.



Bandit Problems Defining the Problem Iterative Update Rule Explanation of Variables Conclusion

Multi-Armed Bandit Problem

Extends the analogy to multiple slot machines (“arms”).

Each arm has an unknown probability of giving a reward.

The challenge: Choose which arm to pull to maximize overall reward.



Bandit Problems Defining the Problem Iterative Update Rule Explanation of Variables Conclusion

Core Challenge: Exploration vs. Exploitation

Exploration: Try different machines to gather information about their
reward probabilities.

Exploitation: Stick with the machine that seems to give the best
rewards based on current knowledge.



Bandit Problems Defining the Problem Iterative Update Rule Explanation of Variables Conclusion

Key Quantities in a Bandit Problem

Action-value function Q(a):

Q(a) is the expected reward when choosing action a.
Q(a) = E[rt |at = a], where rt is the reward at time t.

Objective: Learn Q(a) for all actions a to identify the optimal action a∗:

a∗ = arg max
a

Q(a)



Bandit Problems Defining the Problem Iterative Update Rule Explanation of Variables Conclusion

How to Estimate Q(a)?

We do not know the true Q(a) values. Instead, we estimate them
iteratively.

Let Q̂t(a) be the estimate of Q(a) at time t.

After choosing action a at time t, we observe reward rt .

Simple Update Rule

Update the estimate Q̂t(a) as:

Q̂t+1(a) = Q̂t(a) + α(rt − Q̂t(a))



Bandit Problems Defining the Problem Iterative Update Rule Explanation of Variables Conclusion

Derivation of the Update Rule

Let Nt(a) be the number of times action a has been selected up to time t.

The empirical estimate of Q(a) is the average reward so far:

Q̂t(a) =
1

Nt(a)

Nt(a)∑
i=1

rti

If action a was selected 4 times until time t then Nt(a) = 4.

If action a was selected at time steps 3, 6, 17, and 24, then
t1 = 3, t2 = 6, t3 = 17, and t4 = 24.

Adding the latest reward rt :

Q̂t+1(a) =
1

Nt(a) + 1

(
Nt(a)Q̂t(a) + rt

)



Bandit Problems Defining the Problem Iterative Update Rule Explanation of Variables Conclusion

Rewriting the Update Rule

Simplify the expression:

Q̂t+1(a) =
Nt(a)

Nt(a) + 1
Q̂t(a) +

1

Nt(a) + 1
rt

=

(
1− 1

Nt(a) + 1

)
Q̂t(a) +

1

Nt(a) + 1
rt

= Q̂t(a) +
1

Nt(a) + 1
(rt − Q̂t(a))

Generalize by replacing 1
Nt(a)+1 by a step size α:

Q̂t+1(a) = Q̂t(a) + α(rt − Q̂t(a))

Step size α controls how much the new reward influences the estimate.



Bandit Problems Defining the Problem Iterative Update Rule Explanation of Variables Conclusion

Understanding the Update Rule

Q̂t(a): Current estimate of the action-value function for action a.

rt : Reward observed after taking action a at time t.

α: Step size (learning rate), typically α = 1
Nt(a)

.

(rt − Q̂t(a)): Difference between observed reward and current estimate
(the error).

Intuition

If the reward rt is higher than Q̂t(a), increase Q̂t(a).

If the reward rt is lower than Q̂t(a), decrease Q̂t(a).

Observed reward rt serves as a “target” for current esitmate Q̂t(a).



Bandit Problems Defining the Problem Iterative Update Rule Explanation of Variables Conclusion

Summary of Update Rule for Bandit Problems

We derived the Q-update rule iteratively using rewards and counts.

The rule:
Q̂t+1(a) = Q̂t(a) + α(rt − Q̂t(a))

This rule helps estimate the true action-value function Q(a) over time.

Agent Action

RewardQ-Table

Select

O
u

tc
om

eFeedback

Update

R
ef

er
en

ce



Markov Decision Processes



Markov Decision Processes Bandit Problems vs MDPs Instability in Q-Learning Stabilization in Deep Q-Learning Comparison Conclusion

What is a Markov Decision Process?

A framework for modeling decision-making in environments with:

Actions a
Rewards r
States s
State transitions P(s ′|s, a)

Objective: Maximize cumulative reward over time.



Markov Decision Processes Bandit Problems vs MDPs Instability in Q-Learning Stabilization in Deep Q-Learning Comparison Conclusion

Example: Robot Navigation

States (S): Positions on a grid.
Actions (A): Move up, down, left, right.
Transition probabilities (P): Probability of moving to the intended
position vs slipping.
Rewards (R): +10 for reaching the goal, -1 for each step.

1

1

2

2

3

3

4

4

5

5

R

Goal

Action 1

Action 2



Markov Decision Processes Bandit Problems vs MDPs Instability in Q-Learning Stabilization in Deep Q-Learning Comparison Conclusion

Comparison: Bandit Problems vs MDPs

Aspect Bandit Problem Markov Decision Process (MDP)

State Dependence No states; static actions State transitions influence outcomes
Temporal Dependency Independent decisions Sequential decisions with future impact
Objective Maximize immediate reward Maximize long-term cumulative reward
Decision Horizon Static, no future consideration Dynamic, future actions considered
Policy Strategy for choosing arms Mapping from states to actions
Transition Dynamics Not applicable Defined by P(s ′|s, a)
Example Problem Slot machines Grid navigation or robot control

Table: Key Differences Between Bandit Problems and MDPs



Markov Decision Processes Bandit Problems vs MDPs Instability in Q-Learning Stabilization in Deep Q-Learning Comparison Conclusion

The Update Rule for MDPs

Q-Learning Update Rule

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]

Q(s, a): Current estimate of the action-value function.

r : Immediate reward for taking action a in state s.

γ: Discount factor (importance of future rewards).

maxa′ Q(s ′, a′): Maximum future reward for next state s ′.

α: Learning rate (controls update magnitude).



Markov Decision Processes Bandit Problems vs MDPs Instability in Q-Learning Stabilization in Deep Q-Learning Comparison Conclusion

Breaking Down the Rule

Current Estimate: Q(s, a)

Represents the expected cumulative reward for state s, action a.

Target Value: r + γmaxa′ Q(s ′, a′)

Combines immediate reward r and discounted future rewards.

Update Step:

Adjust Q(s, a) towards the target value with learning rate α:

∆Q(s, a) = α
[
Target− Q(s, a)

]



Markov Decision Processes Bandit Problems vs MDPs Instability in Q-Learning Stabilization in Deep Q-Learning Comparison Conclusion

Example of the Update Rule

Current state: s = s1, action: a = a1
Reward received: r = 10
Next state: s ′ = s2
Q(s2, a

′): {Q(s2, a1) = 20, Q(s2, a2) = 15}
Parameters: α = 0.1, γ = 0.9

Update Calculation

Target = r + γmax
a′

Q(s ′, a′)

= 10 + 0.9× 20

= 28

∆Q(s, a) = α
[
Target− Q(s, a)

]
= 0.1

[
28− Q(s1, a1)

]



Markov Decision Processes Bandit Problems vs MDPs Instability in Q-Learning Stabilization in Deep Q-Learning Comparison Conclusion

Instability in Q-Learning

Bootstrap Updating:

Q(s, a)← Q(s, a) + α

[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]

Relies on current (and often noisy) Q-values.
Errors propagate during learning, causing instability.

Feedback Loops:
Errors in Q-values are fed back into future updates.
Leads to oscillations or divergence in updates.

Overestimation Bias:
maxa′ Q(s ′, a′) can include noisy overestimates.



Markov Decision Processes Bandit Problems vs MDPs Instability in Q-Learning Stabilization in Deep Q-Learning Comparison Conclusion

Stabilization in Deep Q-Learning

Target Network:
Maintains a separate network for target Q-values:

y = r + γmax
a′

Qtarget(s
′, a′; θ−)

Target network updates less frequently.
Reduces feedback loop instability.

Experience Replay:
Stores experiences in a replay buffer.
Samples random batches for training, breaking temporal correlation.
Provides stable gradient updates.



Markov Decision Processes Bandit Problems vs MDPs Instability in Q-Learning Stabilization in Deep Q-Learning Comparison Conclusion

Comparison: Q-Learning vs Deep Q-Learning (DQN)

Aspect Q-Learning Deep Q-Learning
(DQN)

Target Formation Relies on noisy Q-values
from the same table

Uses a separate, stable
target network

Error Propagation Errors propagate quickly,
leading to instability

Errors are controlled with
target network

Overestimation Bias High (noisy max Q-
values)

Reduced (stable refer-
ence for max Q-values)

Stabilizing Techniques None Target network, experi-
ence replay



Markov Decision Processes Bandit Problems vs MDPs Instability in Q-Learning Stabilization in Deep Q-Learning Comparison Conclusion

Conclusion

Q-Learning:
Prone to instability due to bootstrapping directly from its own estimates.
Faster error propagation, oscillations, or divergence.

Deep Q-Learning:
Uses a target network and experience replay for stabilization.
Significantly more stable, especially for complex or high-dimensional
environments.


	Bandit Problems
	Bandit Problems
	Defining the Problem
	Iterative Update Rule
	Explanation of Variables
	Conclusion

	Markov Decision Processes and Temporal Difference Learning
	Markov Decision Processes
	Bandit Problems vs MDPs
	Instability in Q-Learning
	Stabilization in Deep Q-Learning
	Comparison
	Conclusion


