EC332 Machine Learning

Reinforcement Learning: Derivation of Update Rules

Nazar Khan Department of Computer Science University of the Punjab

Bandit Problems

What is a Bandit Problem?

- A bandit problem is a simplified reinforcement learning problem.
- At each time step:
 - **(**) You choose one action from a set of actions $\{a_1, a_2, \ldots, a_n\}$.
 - 2 You receive a reward r_t based on the chosen action.
- Goal: Maximize the total reward over time by learning the best action.

Introduction to Bandit Problems

- The term *bandit problem* originates from the analogy to a *one-armed bandit*.
- A one-armed bandit is a colloquial term for a slot machine used for gambling.
- Slot machines are designed to "steal" money while offering a chance of reward.

What Is a One-Armed Bandit?

- A slot machine with a single lever (or "arm") that a player can pull.
- Known as a "bandit" because it often takes more money than it gives.
- Offers the player an uncertain reward based on fixed probabilities.

Multi-Armed Bandit Problem

- Extends the analogy to multiple slot machines ("arms").
- Each arm has an unknown probability of giving a reward.
- The challenge: Choose which arm to pull to maximize overall reward.

Bandit Problems

Core Challenge: Exploration vs. Exploitation

- **Exploration:** Try different machines to gather information about their reward probabilities.
- **Exploitation:** Stick with the machine that seems to give the best rewards based on current knowledge.

Key Quantities in a Bandit Problem

- Action-value function Q(a):
 - Q(a) is the expected reward when choosing action a.
 - $Q(a) = \mathbb{E}[r_t | a_t = a]$, where r_t is the reward at time t.

• **Objective:** Learn Q(a) for all actions a to identify the optimal action a^* :

$$a^* = rg\max_a Q(a)$$

- We do not know the true Q(a) values. Instead, we estimate them iteratively.
- Let $\hat{Q}_t(a)$ be the estimate of Q(a) at time t.
- After choosing action a at time t, we observe reward r_t .

Simple Update Rule

Update the estimate $\hat{Q}_t(a)$ as:

$$\hat{Q}_{t+1}(a) = \hat{Q}_t(a) + \alpha(r_t - \hat{Q}_t(a))$$

Derivation of the Update Rule

- Let $N_t(a)$ be the number of times action a has been selected up to time t.
- The empirical estimate of Q(a) is the average reward so far.

$$\hat{Q}_t(a) = rac{1}{\mathcal{N}_t(a)}\sum_{i=1}^{\mathcal{N}_t(a)} r_{t_i}$$

- If action a was selected 4 times until time t then $N_t(a) = 4$.
- If action *a* was selected at time steps 3, 6, 17, and 24, then $t_1 = 3, t_2 = 6, t_3 = 17$, and $t_4 = 24$.
- Adding the latest reward r_t:

$$\hat{Q}_{t+1}(a) = rac{1}{N_t(a)+1} \left(N_t(a)\hat{Q}_t(a) + r_t
ight)$$

Rewriting the Update Rule

• Simplify the expression:

$$egin{aligned} \hat{Q}_{t+1}(a) &= rac{N_t(a)}{N_t(a)+1}\hat{Q}_t(a) + rac{1}{N_t(a)+1}r_t \ &= \left(1-rac{1}{N_t(a)+1}
ight)\hat{Q}_t(a) + rac{1}{N_t(a)+1}r_t \ &= \hat{Q}_t(a) + rac{1}{N_t(a)+1}(r_t - \hat{Q}_t(a)) \end{aligned}$$

• Generalize by replacing $\frac{1}{N_t(a)+1}$ by a step size α :

$$\hat{Q}_{t+1}(a) = \hat{Q}_t(a) + \alpha(r_t - \hat{Q}_t(a))$$

 $\bullet\,$ Step size α controls how much the new reward influences the estimate.

Understanding the Update Rule

- $\hat{Q}_t(a)$: Current estimate of the action-value function for action a.
- r_t : Reward observed after taking action *a* at time *t*.
- α : Step size (learning rate), typically $\alpha = \frac{1}{N_t(a)}$.
- $(r_t \hat{Q}_t(a))$: Difference between observed reward and current estimate (the error).

Intuition

- If the reward r_t is higher than $\hat{Q}_t(a)$, increase $\hat{Q}_t(a)$.
- If the reward r_t is lower than $\hat{Q}_t(a)$, decrease $\hat{Q}_t(a)$.
- Observed reward r_t serves as a "target" for current esitmate $\hat{Q}_t(a)$.

Bandit Problems

Summary of Update Rule for Bandit Problems

We derived the Q-update rule iteratively using rewards and counts.The rule:

$$\hat{Q}_{t+1}(a) = \hat{Q}_t(a) + lpha(r_t - \hat{Q}_t(a))$$

• This rule helps estimate the true action-value function Q(a) over time.

Markov Decision Processes

What is a Markov Decision Process?

- A framework for modeling decision-making in environments with:
 - Actions a
 - Rewards r
 - States s
 - State transitions P(s'|s, a)
- Objective: Maximize cumulative reward over time.

Example: Robot Navigation

- States (S): Positions on a grid.
- Actions (A): Move up, down, left, right.
- Transition probabilities (*P*): Probability of moving to the intended position vs slipping.
- Rewards (R): +10 for reaching the goal, -1 for each step.

Comparison: Bandit Problems vs MDPs

Aspect	Bandit Problem	Markov Decision Process (MDP)
State Dependence	No states; static actions	State transitions influence outcomes
Temporal Dependency	Independent decisions	Sequential decisions with future impact
Objective	Maximize immediate reward	Maximize long-term cumulative reward
Decision Horizon	Static, no future consideration	Dynamic, future actions considered
Policy	Strategy for choosing arms	Mapping from states to actions
Transition Dynamics	Not applicable	Defined by $P(s' s, a)$
Example Problem	Slot machines	Grid navigation or robot control

Table: Key Differences Between Bandit Problems and MDPs

The Update Rule for MDPs

Q-Learning Update Rule

$$Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$$

- Q(s, a): Current estimate of the action-value function.
- r: Immediate reward for taking action a in state s.
- γ : Discount factor (importance of future rewards).
- $\max_{a'} Q(s', a')$: Maximum future reward for next state s'.
- α : Learning rate (controls update magnitude).

Breaking Down the Rule

• Current Estimate: Q(s, a)

• Represents the expected cumulative reward for state s, action a.

• Target Value:
$$r + \gamma \max_{a'} Q(s', a')$$

• Combines immediate reward r and discounted future rewards.

- Update Step:
 - Adjust Q(s, a) towards the target value with learning rate α :

$$\Delta Q(s, a) = \alpha \big[\mathsf{Target} - Q(s, a) \big]$$

Example of the Update Rule

- Current state: $s = s_1$, action: $a = a_1$
- Reward received: r = 10
- Next state: $s' = s_2$
- $Q(s_2, a')$: { $Q(s_2, a_1) = 20, Q(s_2, a_2) = 15$ }
- Parameters: $\alpha = 0.1, \gamma = 0.9$

Update Calculation

$$\begin{aligned} \mathsf{Target} &= r + \gamma \max_{a'} Q(s', a') \\ &= 10 + 0.9 \times 20 \\ &= 28 \\ \Delta Q(s, a) &= \alpha \big[\mathsf{Target} - Q(s, a) \big] \\ &= 0.1 \big[28 - Q(s_1, a_1) \big] \end{aligned}$$

Instability in Q-Learning

• Bootstrap Updating:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

- Relies on current (and often noisy) Q-values.
- Errors propagate during learning, causing instability.

• Feedback Loops:

- Errors in Q-values are fed back into future updates.
- Leads to oscillations or divergence in updates.

• Overestimation Bias:

• $\max_{a'} Q(s', a')$ can include noisy overestimates.

Stabilization in Deep Q-Learning

• Target Network:

• Maintains a separate network for target Q-values:

$$y = r + \gamma \max_{a'} Q_{\text{target}}(s', a'; \theta^{-})$$

- Target network updates less frequently.
- Reduces feedback loop instability.

• Experience Replay:

- Stores experiences in a replay buffer.
- Samples random batches for training, breaking temporal correlation.
- Provides stable gradient updates.

Stabilization in Deep Q-Learning Comparison Conclusion

Comparison: Q-Learning vs Deep Q-Learning (DQN)

Aspect	Q-Learning	Deep Q-Learning (DQN)
Target Formation	Relies on noisy Q-values from the same table	Uses a separate, stable target network
Error Propagation	Errors propagate quickly, leading to instability	Errors are controlled with target network
Overestimation Bias	High (noisy max Q- values)	Reduced (stable refer- ence for max Q-values)
Stabilizing Techniques	None	Target network, experi- ence replay

Conclusion

• Q-Learning:

- Prone to instability due to bootstrapping directly from its own estimates.
- Faster error propagation, oscillations, or divergence.

• Deep Q-Learning:

- Uses a target network and experience replay for stabilization.
- Significantly more stable, especially for complex or high-dimensional environments.