EC-332 Machine Learning

Convolutional Neural Networks

Nazar Khan Department of Computer Science University of the Punjab CNN

Convolutional layer

Convolution

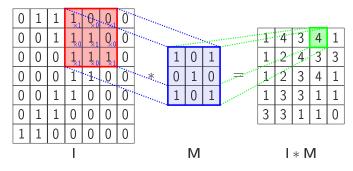
Source: http://www.texample.net/tikz/examples/convolution-of-two-functions/

Nazar Khan

Machine Learning

CNN

2D Convolution *Example*



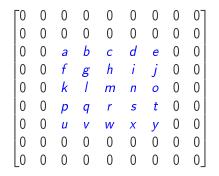
Modified from https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution M is usually called a *mask* or *kernel* or *filter*.

Dealing with boundaries

- What about edge and corner pixels where the mask goes outside the image boundaries?
 - Expand image *I* with virtual pixels. Options are:
 - 1. Fill with a particular value, *e.g.* zeros.
 - 2. Replicating boundaries: fill with nearest pixel value.
 - 3. Reflecting boundaries: mirror the boundary
 - ► Fatalism: just ignore them. Not recommended since size of *I* * *M* will shrink.

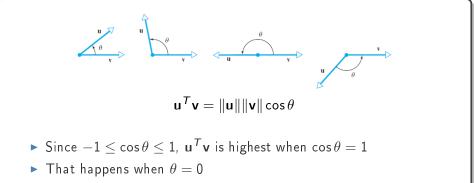
Dealing with boundaries *Expand by zeros*

For a 5 \times 5 image and 5 \times 5 mask



A Neuron as a Detector

- ► A neuron can be viewed as a detector.
- ▶ When it fires, the input must have been similar to its weights.
 - Firing $\implies \mathbf{w}^T \mathbf{x}$ was high $\implies \mathbf{w}$ was similar to \mathbf{x}
- So neuron firing indicates detection of something similar to its weights.

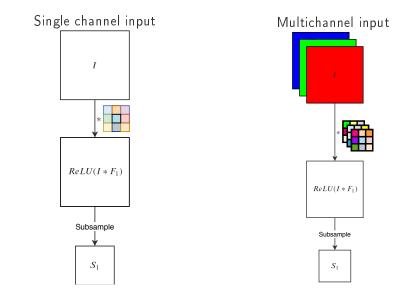


That happens when vectors u and v point in the same direction.

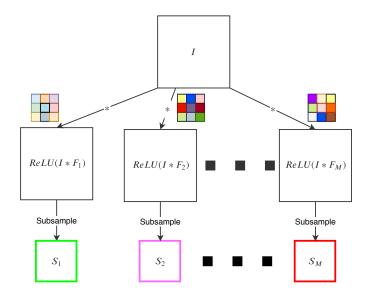
Convolutional Neural Networks

- Now we will look at networks that produce neuronal output via convolution.
- ► Known as Convolutional Neural Networks (CNNs).
- Most frequently used network architecture.
- Exploits local correlation of inputs.

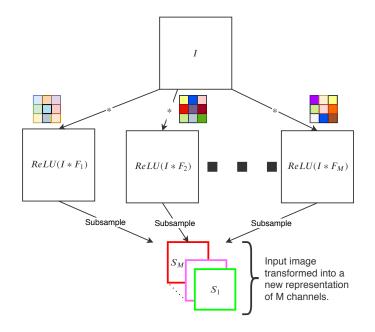
Building Blocks of CNNs Viewing convolution as neurons



Building blocks of CNNs



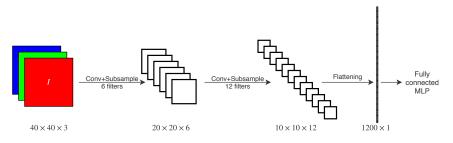
Building blocks of CNNs



CNN

CNN

- Convolution by *M* filters produces *M* channels.
- ▶ They represent an *M*-channel transformation of the input image *I*.
- This M-channel image can now be transformed further via additional convolution filters.
- Convolution-subsampling block can be repeated multiple times.
- I → M₁ channels → M₂ channels → ··· → M_b channels → flattening → MLP.

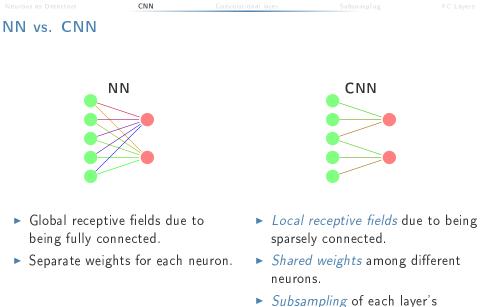


Convolutional Neural Networks

- ► For recognition of hand-written digits, we have seen that inputs are images and outputs are posterior probabilities p(C_k|x) for k = 1,...,10.
- The digits true identity is invariant under
 - translation, scaling, (small) rotation, and
 - small elastic deformations (multiple writings of the same digit by the same person will have subtle differences).
- ► The output of the neural network should also be invariant to such changes.
- A traditional fully connected neural network can, in principle, learn these invariances using lots of examples.
- ► However, it totally ignores the *local correlation* property of images.
 - Nearby pixels are more strongly correlated than pixels that are far apart.

Convolutional Neural Networks

- Modern computer vision exploits local correlation by extracting features from local patches and combining this information to detect higher-order features.
 - Example: Gradients \longrightarrow Edges \longrightarrow Lines \longrightarrow
- ► Local features useful in one sub-region can be useful in other sub-regions.
 - Example: same object appearing at different locations.
- This weakness of standard neural nets is overcome by CNNs.



 Subsampling of each laye outputs.

Receptive field of a neuron consists of previous layer neurons that it is

Nazar Konnected to (or looking at)Machine Learning

CNN

Convolutional layer

- Consists of multiple arrays of neurons. Each such array is called a *slice* or more accurately *feature map*.
- Each neuron in a feature map
 - ▶ is connected to only few neurons in the previous layer, but
 - uses the same weight values as all other neurons in that feature map.
- So within a feature map, we have both
 - local receptive fields, and
 - shared weights.

Convolutional layer

- Example: A feature map may have
 - $\blacktriangleright~100$ neurons placed in a 10 \times 10 array, with
 - each neuron getting input from a 5 × 5 patch of neurons in the previous layer (receptive field), and
 - the same $26(=5 \times 5 + 1)$ weights shared between these 100 neurons.
- ► Viewed as detectors, all 100 neurons detect the same 5 × 5 pattern but at different locations of the previous layer.
- Different feature maps will learn¹ to detect different kinds of patterns.
 - ► For example, one feature map might learn to detect horizontal edges while others might learn to detect vertical or diagonal edges and so on.

¹based on their learned weights

Convolutional layer

- ► To compute activations of the 100 neurons, a dot-product is computed between the same shared weights and different 5 × 5 patches of previous layer neurons.
- This is equivalent to sliding a window of weights over the previous layer and computing the dot-product at each location of the window.
- Therefore, activations of the feature map neurons are computed via convolution of the previous layer with a kernel comprising the shared weights. Hence the name of this layer.

Subsampling layer

- Reduces the spatial dimensions of the previous layer by downsampling. Also called *pooling* layer.
- Example: downsampling previous layer of $n \times n$ neurons by factor 2 yields a pooled layer of $\frac{n}{2} \times \frac{n}{2}$ neurons.
- ► No adjustable weights. Just a fixed downsampling procedure.
- Reduces computations in subsequent layers.
- Reduces number of weights in subsequent layers. This reduces overfitting.

Subsampling

- \blacktriangleright Options: From non-overlapping 2 \times 2 patches
 - pick top-left (standard downsampling by factor 2)
 - pick average (mean-pooling)
 - pick maximum (max-pooling)
 - pick randomly (stochastic-pooling)
- Fractional max-pooling: pick pooling region randomly.

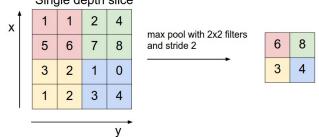


Figure: Max-pooling with 2 × 2 receptive fields, and stride of 2 neurons. Source: http://cs231n.github.io/convolutional-networks/

Nazar Khan

Machine Learning

Single depth slice

Subsampling

- ► The options in the last slide discard 75% of the data.
- They correspond to
 - neurons with 2×2 receptive fields, and
 - stride of 2 neurons.
- This is the most commonly used configuration. Other options exist but note that pooling with larger receptive fields discards too much data.
- Subsampling layer can be skipped if convolution layers uses stride>1 since that also produces a subsampled output.

Subsampling

A pooling layer

- with $F \times F$ receptive field and stride S,
- "looking at" a $W_1 imes H_1 imes D_1$ input volume,
- ▶ produces a $W_2 \times H_2 \times D_2$ output volume, where

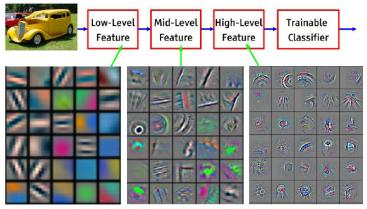
▶
$$W_2 = \frac{W_1 - F}{S} + 1$$

▶ $H_2 = \frac{H_1 - F}{S} + 1$
▶ $D_2 = D_1$.

Fully Connected Layers

- ► After flattening, a fully connected MLP can be used.
- ► The last layer has
 - neurons equal to the desired output size, and
 - activation functions based on the problem to be solved.
- The flattened layer can therefore be viewed as a transformation φ(x) that is fed into an MLP.
- Similarly, outputs of earlier layers are *intermediate representations* of the input.

Intermediate Representations



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Intermediate feature representations. Early layers form simple, low-level representations of the input. They are used to incrementally form more complex, high-level representations. Source: http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf

CNN Variations

- ► There are *lots* of variations.
 - Fully convolutional networks. No pooling and no fully connected layer.
 - 1×1 convolutions to reduce computations.
 - Inception modules to combine multiple filter sizes.
 - Residual blocks to avoid vanishing gradients.
 - > Depthwise separable convolutions to reduce parameters and computations.
 - Lightweight and fast models (SqueezeNet, MobileNet, ...) for edge computing.
 - Fast search over hyperparameters (EfficientNet).

Summary

- Many signals such as sounds, images, and videos obey the *local* correlation property.
- MLPs ignore local correlation.
- CNNs are a special kind of neural architecture that
 - exploits local correlation
 - extracts multi-scale features, and
 - extracts translation covariant features
- These properties are built into the design of the architecture.