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Curve Fitting Regularized Curve Fitting

Example: Polynomial Curve Fitting

Problem: Given N observations of input xi with corresponding observations of

output ti , �nd function f (x) that predicts t for a new value of x .
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Real-world Data

Real-world data has 2 important properties

1. underlying regularity,

2. individual observations are corrupted by noise.

Learning corresponds to discovering the underlying regularity of data (the

sin(·) function in our example).
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Polynomial curve �tting

I We will �t the points (x , t) using a polynomial function

y(x ,w) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑
j=0

wjx
j

where M is the order of the polynomial.

I Function y(x ,w) is a
I non-linear function of the input x , but
I a linear function of the parameters w.

I So our model y(x ,w) is a linear model.
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Polynomial curve �tting

I Fitting corresponds to �nding the optimal w. We denote it as w∗.

I Optimal w∗ can be found by minimising an error function

E (w) =
1

2

N∑
n=1

{y(xn,w)− tn}2

I Why does minimising E (w) make sense?

I Can E (w) ever be negative?

I Can E (w) ever be zero?
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Geometric interpratation of the sum-of-squares error function.
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Over-�tting

I Lower order polynomials can't capture the variation in data.

I Higher order leads to over-�tting.
I Fitted polynomial passes exactly through each data point.
I But it oscillates wildly in-between.
I Gives a very poor representation of the real underlying function.

I Over-�tting is bad because it gives bad generalization.

Nazar Khan Machine Learning



Curve Fitting Regularized Curve Fitting

Over-�tting

I To check generalization performance of a certain w∗, compute E (w∗) on
a new test set.

I Alternative performance measure: root-mean-square error (RMS)

ERMS =

√
2E (w∗)

N

I Mean ensures datasets of di�erent sizes are treated equally. (How?)

I Square-root brings the squared error scale back to the scale of the target

variable t.
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Root-mean-square error on training and test set for various polynomial orders

M.
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Paradox?

I A polynomial of order M contains all polynomials of lower order.

I So higher order should always be better than lower order.

I But, it's not better. Why?
I Because higher order polynomial starts �tting the noise instead of the

underlying function.
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Over-�tting

I Typical magnitude of the polynomial coe�cients is increasing dramatically

as M increases.
I This is a sign of over-�tting.
I The polynomial is trying to �t the data points exactly by having larger

coe�cients.
Nazar Khan Machine Learning



Curve Fitting Regularized Curve Fitting

Over-�tting

I Large M =⇒ more �exibility =⇒ more tuning to noise.
I But, if we have more data, then over-�tting is reduced.

I Fitted polynomials of order M = 9 with N = 15 and N = 100 data points.

More data reduces the e�ect of over-�tting.
I Rough heuristic to avoid over-�tting: Number of data points should be

greater than k |w| where k is some multiple like 5 or 10.
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How to avoid over-�tting

I Since large coe�cients =⇒ over-�tting, discourage large coe�cents in

w.

Ẽ (w) =
1

2

N∑
n=1

{y(xn,w)− tn}2 +
λ

2
||w||2

where ||w||2 = wTw = w2
0 + w2

1 + · · ·+ w2
M and λ controls the relative

importance of the regularizer compared to the error term.

I Also called regularization, shrinkage, weight-decay.
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For a polynomial of order 9

For λ = e−18 For λ = 1

No over-�tting Too much smoothing (no �tting)
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E�ect of regularization

I As λ increases, the typical magnitude of coe�cients gets smaller.

I We go from over-�tting (λ = 0) to no over-�tting (λ = e−18) to poor

�tting (λ = 1).

I Since M = 9 is �xed, regularization controls the degree of over-�tting.
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E�ect of regularization

Graph of root-mean-square (RMS) error of �tting the M = 9 polynomial as λ
is increased.
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