EC-332 Machine Learning

Nazar Khan

Department of Computer Science University of the Punjab

Curve Fitting and Regularization

Example: Polynomial Curve Fitting

Problem: Given N observations of input x_i with corresponding observations of output t_i , find function f(x) that predicts t for a new value of x.

Real-world Data

Real-world data has 2 important properties

- 1. underlying regularity,
- 2. individual observations are corrupted by noise.

Learning corresponds to discovering the underlying regularity of data (the $sin(\cdot)$ function in our example).

Nazar Khan

. .

Polynomial curve fitting

• We will fit the points (x, t) using a polynomial function

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

where M is the *order* of the polynomial.

- ► Function y(x, w) is a
 - non-linear function of the input x, but
 - ► a linear function of the parameters **w**.
- So our model $y(x, \mathbf{w})$ is a *linear model*.

Polynomial curve fitting

- Fitting corresponds to finding the optimal \mathbf{w} . We denote it as \mathbf{w}^* .
- Optimal w* can be found by minimising an error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- Why does minimising $E(\mathbf{w})$ make sense?
- ► Can *E*(**w**) ever be negative?
- ► Can *E*(**w**) ever be zero?

Geometric interpratation of the sum-of-squares error function.

- Lower order polynomials can't capture the variation in data.
- ► Higher order leads to *over-fitting*.
 - Fitted polynomial passes *exactly* through each data point.
 - But it oscillates wildly in-between.
 - Gives a very poor representation of the real underlying function.
- Over-fitting is bad because it gives bad generalization.

- ► To check generalization performance of a certain w^{*}, compute E(w^{*}) on a *new* test set.
- Alternative performance measure: root-mean-square error (RMS)

$$E_{RMS} = \sqrt{\frac{2E(\mathbf{w}^*)}{N}}$$

- Mean ensures datasets of different sizes are treated equally. (How?)
- Square-root brings the squared error scale back to the scale of the target variable t.

Root-mean-square error on training and test set for various polynomial orders M.

Paradox?

- A polynomial of order *M* contains all polynomials of lower order.
- So higher order should *always* be better than lower order.
- **But**, it's not better. Why?
 - Because higher order polynomial starts fitting the noise instead of the underlying function.

	M = 0	M = 1	M=3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

- Typical magnitude of the polynomial coefficients is increasing dramatically as *M* increases.
- This is a sign of over-fitting.
- The polynomial is trying to fit the data points exactly by having larger coefficients.

- Large $M \implies$ more flexibility \implies more tuning to noise.
- **But**, if we have more data, then over-fitting is reduced.

- Fitted polynomials of order M = 9 with N = 15 and N = 100 data points. More data reduces the effect of over-fitting.
- Rough heuristic to avoid over-fitting: Number of data points should be greater than k|w| where k is some multiple like 5 or 10.

How to avoid over-fitting

 Since large coefficients ⇒ over-fitting, discourage large coefficents in w.

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

where $||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w} = w_0^2 + w_1^2 + \cdots + w_M^2$ and λ controls the relative importance of the regularizer compared to the error term.

► Also called *regularization*, *shrinkage*, *weight-decay*.

For a polynomial of order 9

Effect of regularization

	$\ln \lambda = -\infty$	$\ln\lambda=-18$	$\ln\lambda=0$
w_0^\star	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

- \blacktriangleright As λ increases, the typical magnitude of coefficients gets smaller.
- ▶ We go from over-fitting ($\lambda = 0$) to no over-fitting ($\lambda = e^{-18}$) to poor fitting ($\lambda = 1$).
- Since M = 9 is fixed, regularization controls the degree of over-fitting.

Effect of regularization

Graph of root-mean-square (RMS) error of fitting the M = 9 polynomial as λ is increased.