
EC-332 Machine Learning

Gradient Descent and its Variations

Nazar Khan

Department of Computer Science

University of the Punjab

GD Rprop Taylor Series Newton's Method Quickprop

So far . . .

I Neural Networks are universal approximators.

I Backpropagation allows computation of derivatives in hidden layers.

I In this lecture: gradient descent �nds weights corresponding to local
minimum of loss surface.

I In this lecture: alternative methods of �nding local minima of loss surface.

I Gradient descent
I First-order methods

I Rprop

I Second-order methods
I Taylor series approximation
I Newton's method
I Quickprop

I Next lecture:
I Momentum-based �rst-order methods

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Minimization

f (x) = x2 + 1

x∗ = 0

Slope = df

dx

∣∣
1

= 2

x = 1 x + df

dx

∣∣
1

Slope = df

dx

∣∣
−1

= −2

x = −1x + df

dx

∣∣
−1

What is the slope/derivative/gradient at the minimizer x∗ = 0?

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Minimization
Local vs. Global Minima

Global
Minimum

Local
Minimum

Local
Maximum

I Stationary point: where derivative is 0.

I A stationary point can be a minimum or a maximum.

I A minimum can be local or global. Same for maximum.

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Gradient Descent

I Gradient is the direction, in input
space, of maximum rate of
increase of a function.

f

(
x +

df

dx

)
≥ f (x)

I To minimize function f (x) with
respect to x , move in negative
gradient direction.

xnew = xold − df

dx

∣∣∣∣
xold

I Try it! Start from xold = −1. Do
you notice any problem?

f (x) = x2 + 1

x∗ = 0

Slope = df

dx

∣∣
1

= 2

x = 1 x + df

dx

∣∣
1

Slope = df

dx

∣∣
−1

= −2

x = −1x + df

dx

∣∣
−1

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Minimization via Gradient Descent

I To minimize loss L(w) with respect to weights w

w
new = w

old − η∇wL(w)

where scalar η > 0 controls the step-size. It is called the learning rate.

I Also known as gradient descent.

Repeated applications of gradient descent �nd the closest local min-
imum.

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Gradient Descent

1. Initialize wold randomly.

2. do

2.1 wnew ← wold − η ∇wL(w)|
w
old

3. while
∣∣L(wnew)− L(wold)

∣∣ > ε

I Learning rate η needs to be reduced gradually to ensure convergence to a

local minimum.

I If η is too large, the algorithm can overshoot the local minimum and keep
doing that inde�nitely (oscillation).

I If η is too small, the algorithm will take too long to reach a local
minimum.

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Gradient Descent

I Di�erent types of gradient descent:

Batch wnew = wold − η∇wL
Sequential wnew = wold − η∇wLn
Stochastic same as sequential but n is chosen randomly

Mini-batches wnew = wold − η∇wLB
I Most common variations are stochastic gradient descent (SGD) and SGD

using mini-batches.

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Gradient Descent in Higher Dimensions

I Let ∆wτ+1 denote the step at time τ + 1.

w τ+1 = w τ + ∆w τ+1

I For gradient descent

∆w
τ+1 = −η∇τ

w
L

I For gradient descent in 1D,

∆w τ+1 = −η dL

dw

∣∣∣∣
τ

The only issue is determining learning rate η.

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

−1 −0.5 0 0.5 1 −1

0

1−1

−0.5

x
y

f (x , y) = − exp
(
−(3

4
x)2 − (5

4
y)2
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

Iso-contours of f (x , y)

A function that changes faster in y -direction.

I In higher dimensions, if
∣∣∣ ∂L∂wi

∣∣∣ >> ∣∣∣ ∂L∂wj

∣∣∣ then using the same η can result

in overshooting in the direction of wi and very slow convergence in the
direction of wj .

I Solution: separate learning rate ηi for each direction wi .

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Resilient Propagation (Rprop)

I In Rprop1, each direction is handled independently.

I Increase learning rate for direction i if current derivative has same sign as
previous derivative.

I Otherwise, you just overshot a minimum.
I So go back to previous location.
I Decrease learning rate for that direction.
I Update parameter with this smaller step.

ηi =

αηi if ∂L

∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

> 0

βηi if ∂L
∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

< 0

ηi otherwise

I Hyperparameters should follow the constraint α > 1 and β < 1.
1Riedmiller and Braun, `A direct adaptive method for faster backpropagation learning:

The RPROP algorithm'.

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Resilient Propagation (Rprop)

I Typical values are α = 1.2 and β = 0.5.
I Increase learning rate slowly but decrease quickly when you overshoot.

I In practice, learning rates are bounded via ηmin and ηmax.

ηi =

min(αηi , ηmax) if ∂L

∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

> 0

max(βηi , ηmin) if ∂L
∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

< 0

ηi otherwise

I Rprop converges much faster than gradient descent.

I But it works well when derivatives are accumulated over large batches.

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Taylor Series Approximation

I If values of a function f (a) and its derivatives f ′(a), f ′′(a), . . . are known
at a value a, then we can approximate f (x) for x close to a via the Taylor

series expansion

f (x) ≈ f (a)+(x−a)1
f ′(a)

1!
+(x−a)2

f ′′(a)

2!
+(x−a)3

f ′′′(a)

3!
+O((x−a)4)

I Using ∆x = x − a, Taylor series can be equivalently expressed as

f (a + ∆x) ≈ f (a) + (∆x)1
f ′(a)

1!
+ (∆x)2

f ′′(a)

2!
+ (∆x)3

f ′′′(a)

3!
+ O((∆x)4)

=
∞∑
n=0

1

n!
f n(a)(∆x)n

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Taylor Series Approximation
Examples

I For x around a = 0
I sin(x) ≈ x − x

3

3! + x
5

5! −
x
7

7! + . . .

I ex ≈ 1 + x
1

1! + x
2

2! + x
3

3! + x
4

4! + . . .

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Taylor Series Approximation
Not very useful for x not close to a

−6 −4 −2 2 4 6

−4

−2

2

4
sin(x)

3rd order approx. at 0
7th order approx. at 0

The sine function (blue) is closely approximated around 0 by its Taylor
polynomials. The 7th order approximation (green) is good for a full period
centered at 0. However, it becomes poor for |x − 0| > π.

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Taylor Series Approximation

I It is often convenient to use the �rst-order Taylor expansion

f (a + ∆x) ≈ f (a) + ∆xf ′(a)

or the second order Taylor expansion

f (a + ∆x) ≈ f (a) + ∆xf ′(a) +
1

2
(∆x)2f ′′(a)

I In d -dimensional input space

f (a + ∆x) ≈ f (a) + ∆x
T∇f +

1

2
∆x

T
H∆x

where H ∈ Rd×d is the Hessian matrix composed from second derivatives.

H =

∂2f

∂x1∂x1
∂2f

∂x1∂x2
. . . ∂2f

∂x1∂xd
∂2f

∂x2∂x1
∂2f

∂x2∂x2
. . . ∂2f

∂x2∂xd
...

...
. . .

...
∂2f

∂xd∂x1
∂2f

∂xd∂x2
. . . ∂2f

∂xd∂xd

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Newton's Method for �nding stationary points

I Starting from a0, we want to �nd a stationary point of f .

I Instead of actual function f , use a quadratic approximation (second-order
Taylor expansion) of f at a0.

I Find a step ∆x such that a0 + ∆x minimizes the quadratic approximation
of f .

d

d∆x

(
f (a0) + f ′(a0)∆x +

1

2
f ′′(a0)(∆x)2

)
= 0

f ′(a0) + f ′′(a0)∆x = 0

∆x = − f ′(a0)

f ′′(a0)

I Move to a1 = a0 + ∆x and repeat the process at a1.

I Continue until convergence to a stationary point an.

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Newton's Method for �nding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Newton's Method for �nding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Quadratic approximation of f at 0.75

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Newton's Method for �nding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Quadratic approximation of f at 1.00

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Newton's Method for �nding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Quadratic approximation of f at 0.90

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Newton's Method for �nding stationary points

0.6 0.7 0.8 0.9 1.0 1.1 1.2

f(x) = 6x5 5x4 4x3 + 3x2

a0 a1a2a3

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Newton's Method
Role of the 2nd-derivative

I For weights of a neural network, Newton's update corresponds to

w τ+1 = w τ −
(
∂2L

∂w2

)−1
∂L

∂w

I In other words, gradient descent learning rate η corresponds to inverse of
2nd-derivative.

I Division by 2nd-derivative can also be viewed as normalising the gradient.

I In higher dimensions
w
τ+1 = w

τ −H
−1∇wL

The inverse Hessian matrix normalises the gradient vector.

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Newton's Method
Role of the 2nd-derivative

I Complete Hessian matrix is rarely used because of its size and
computational cost of inverting it.

I Common assumption: diagonal Hessian matrix.

H =

∂2f

∂x1∂x1
0 . . . 0

0 ∂2f
∂x2∂x2

. . . 0
...

...
. . .

...

0 0 . . . ∂2f
∂xd∂xd

I Inverse of diagonal matrix is cheap (reciprocal of entries on the diagonal).

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Quickprop

I Decouple all directions.

I Perform Newton updates in each direction.

w τ+1

i = w τ
i −

(
∂2L

∂w2
i

)−1
∂L

∂wi

I Approximate 2nd-derivative numerically by �nite di�erence of
1st-derivatives.

∂2L

∂w2
i

≈
∂L
∂wi

∣∣∣
τ
− ∂L

∂wi

∣∣∣
τ−1

∆w τ−1
i

I Leads to very fast convergence.

I Some instability where loss is non-convex since everything is based on
assumptions of convexity (quadratic approximation in Newton's method).

Fahlman, An empirical study of learning speed in back-propagation networks.

Nazar Khan Machine Learning

GD Rprop Taylor Series Newton's Method Quickprop

Summary

I For complex and non-convex loss functions of deep networks, vanilla
gradient descent can get stuck in poor local minima and saddle points.

I It can also converge very slowly.

I Di�erent directions require di�erent learning rates.

I Adaptive learning rates are very important.

I Next lecture: momentum-based �rst-order methods.

Nazar Khan Machine Learning

	GD
	Rprop
	Taylor Series
	Newton's Method
	Quickprop

