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So far ...

v

Neural Networks are universal approximators.

v

Backpropagation allows computation of derivatives in hidden layers.

v

In this lecture: gradient descent finds weights corresponding to local
minimum of loss surface.

v

In this lecture: alternative methods of finding local minima of loss surface.

» Gradient descent
» First-order methods

> Rprop
» Second-order methods

> Taylor series approximation
> Newton's method
> Quickprop

> Next lecture:
» Momentum-based first-order methods
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GD

Minimization

What is the slope/derivative/gradient at the minimizer x* = 07
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GD

Minimization
Local vs. Global Minima

Local
Maximum

Minimum

Global
Minimum

» Stationary point: where derivative is 0.
» A stationary point can be a minimum or a maximum.

» A minimum can be local or global. Same for maximum.
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GD
Gradient Descent
» Gradient is the direction, in input

space, of maximum rate of
increase of a function.

f <x+ii> > f(x)

» To minimize function f(x) with
respect to x, move in negative
gradient direction.

_df
dx

snew Xold

xold

» Try it! Start from x4 = —1. Do
you notice any problem?
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GD
Minimization via Gradient Descent
» To minimize loss L(w) with respect to weights w
whew — WoId o nva(W)

where scalar 7 > 0 controls the step-size. It is called the /earning rate.

» Also known as gradient descent.

Repeated applications of gradient descent find the closest local min-
imum.
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GD

Gradient Descent

old randomly.

1. Initialize w
2. do
2.1 wreY — wold _p Vwl(w)],eld

3. while [L(w"®") — L(wO)| > €

> Learning rate 1) needs to be reduced gradually to ensure convergence to a
local minimum.

» If 1 is too large, the algorithm can overshoot the local minimum and keep
doing that indefinitely (oscillation).

» If 1 is too small, the algorithm will take too long to reach a local
minimum.
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GD

Gradient Descent

» Different types of gradient descent:

Batch wheW = wold — v, L
Sequential whew = wold — v L,
Stochastic same as sequential but n is chosen randomly

Mini-batches  w"®" = w4 — VL5
» Most common variations are stochastic gradient descent (SGD) and SGD
using mini-batches.
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GD
Gradient Descent in Higher Dimensions
» Let Aw”T! denote the step at time 7 + 1.
Wl — w1 AT
» For gradient descent
AW = VTl
» For gradient descent in 1D,

dL

AT+1:— M=
v ndWT

The only issue is determining learning rate 7.
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GD

Iso-contours of f(x,y)
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A function that changes faster in y-direction.

» In higher dimensions, if ‘ ‘ >> ‘ then using the same 7 can result
wj

in overshooting in the dlrectlon of w; and very slow convergence in the
direction of w;.

» Solution: separate learning rate 7); for each direction w;.
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Rprop

Resilient Propagation (Rprop)

» In Rprop?, each direction is handled independently.

» Increase learning rate for direction i if current derivative has same sign as
previous derivative.
» Otherwise, you just overshot a minimum.

» So go back to previous location.
» Decrease learning rate for that direction.
» Update parameter with this smaller step.

. oL oL
an; if aw, aW’ ‘ >0
ni = i ’ 8w, ‘ <0
T—1
ni otherW|se

» Hyperparameters should follow the constraint @ > 1 and § < 1.

!Riedmiller and Braun, ‘A direct adaptive method for faster backpropagation learning:
The RPROP algorithm'.
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Rprop

Resilient Propagation (Rprop)

» Typical values are « = 1.2 and § = 0.5.
» Increase learning rate slowly but decrease quickly when you overshoot.
> In practice, learning rates are bounded via Mmin and 7Jmax-
min(an;, Mmax) if gw‘ aaw, . >0
1 T 1 T—
J— o oL oL
ni = § max(Bni, Nmin)  if 8"""‘7 * Bwi| <0
n; otherwise
» Rprop converges much faster than gradient descent.
» But it works well when derivatives are accumulated over large batches.
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Taylor Series

Taylor Series Approximation

» If values of a function f(a) and its derivatives f'(a), f”(a),... are known
at a value a, then we can approximate f(x) for x close to a via the Taylor
series expansion

21"(a)
2!

f‘///( )
3!

@)y L O((x—a)")

T +(x—a)®

f(x) ~ f(a)+(x

» Using Ax = x — a, Taylor series can be equivalently expressed as

o+ ) ~ F(3) + (80" 2 1 (202 10 4 (a1 4 o(anyt)

1! 3!
Zi

n=0

3...
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Taylor Series

Taylor Series Approximation
Examples
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Taylor Series

Taylor Series Approximation
Not very useful for x not close to a

— sin(x)
—— 3rd order approx. at 0
—— Tth order approx. at 0

The sine function (blue) is closely approximated around 0 by its Taylor
polynomials. The 7th order approximation (green) is good for a full period
centered at 0. However, it becomes poor for [x — 0| > 7.
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Taylor Series

Taylor Series Approximation

» |t is often convenient to use the first-order Taylor expansion

f(a+ Ax) =~ f(a) + Axf'(a)

or the second order Taylor expansion

f(a+ Ax) ~ f(a) + Axf'(a) +

» In d-dimensional input space

1 1
S (80)2f"(2)

f(a+ Ax) ~ f(a) + AxTVF + %AXTHAX

where H € R9%9 s the Hessian matrix composed from second derivatives.

92 f ?f ?f
Ox10x1 Ox10x2 Ox10xy4
82 f 2 2
H= Oxp0x1 Ixa0x2 Ox20xy
92 f Pf Pf
OxqOx1  OxgOx2 OxqOxq
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Newton’s Method

Newton’s Method for finding stationary points

» Starting from ag, we want to find a stationary point of f.

» Instead of actual function f, use a quadratic approximation (second-order
Taylor expansion) of f at ag.

> Find a step Ax such that ap + Ax minimizes the quadratic approximation
of f.

& <f(ao) + F(a0)Dx + ;f”(ao)(Ax)2> —0
f'(a0) + f"(a0)Ax =0

f'(a0)

f"(a0)

Ax = —

» Move to a; = ag + Ax and repeat the process at a;.

» Continue until convergence to a stationary point aj.
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Newton’s Method

Newton’s Method for finding stationary points

1.0

fix) = 6x°> — 5x* — 4x3 + 3x?

—0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Newton’s Method

Newton’s Method for finding stationary points

1.0

0.8 A

0.6

0.4 1

fix) = 6x°> — 5x* — 4x3 + 3x?

Quadratic approximation of fat 0.75

0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Newton’s Method

Newton’s Method for finding stationary points

1.0
fix) = 6x°> — 5x* — 4x3 + 3x?
0.8 1
0.6

0.4 1

Quadratic approximation of fat 1.00

—0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Newton’s Method

Newton’s Method for finding stationary points

1.0
fix) = 6x°> — 5x* — 4x3 + 3x?
0.8 1
0.6

0.4 1

Quadratic approximation of fat 0.90

—0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Newton’s Method

Newton’s Method for finding stationary points

f(x) = 6x> — 5x% — 4x3 + 3x?

1.2
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Newton’s Method

Newton’'s Method
Role of the 2nd-derivative

> For weights of a neural network, Newton's update corresponds to

2L\t oL
o o R o il
v ((9W2> ow

» In other words, gradient descent learning rate 7 corresponds to inverse of
2nd-derivative.

» Division by 2nd-derivative can also be viewed as normalising the gradient.

> In higher dimensions

wtl=w” —H1lv,L

The inverse Hessian matrix normalises the gradient vector.
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Newton’s Method

Newton’'s Method
Role of the 2nd-derivative

» Complete Hessian matrix is rarely used because of its size and
computational cost of inverting it.

» Common assumption: diagonal Hessian matrix.

O2f
20 .0
0 9°f 0
H=— Ox20xy """
0 0 02 f

8Xd 8Xd

» Inverse of diagonal matrix is cheap (reciprocal of entries on the diagonal).
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Quickprop

Quickprop

v

Decouple all directions.

v

Perform Newton updates in each direction.

W’7'+1 = w’ — <a2L>1 oL

» Approximate 2nd-derivative numerically by finite difference of

1st-derivatives.
oL oL
0L owi | Ow;

8WI-2 AWIT_I

7—1

v

Leads to very fast convergence.

v

Some instability where loss is non-convex since everything is based on
assumptions of convexity (quadratic approximation in Newton's method).

Fahlman, An empirical study of learning speed in back-propagation networks.
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Quickprop

Summary

» For complex and non-convex loss functions of deep networks, vanilla
gradient descent can get stuck in poor local minima and saddle points.

It can also converge very slowly.

v

Different directions require different learning rates.

v

v

Adaptive learning rates are very important.

Next lecture: momentum-based first-order methods.

v
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