EC-332 Machine Learning

Loss Functions and Activation Functions for Machine Learning

Nazar Khan

Department of Computer Science University of the Punjab

Pre-requisites

- ▶ Before looking at how a multilayer perceptron can be trained, one must study
 - 1. Gradient computation
 - 2. Gradient descent
 - 3. Loss functions for machine learning
 - 4. Smooth activation functions

Loss Functions for Machine Learning

Notation:

- Let $x \in \mathbb{R}$ denote a *univariate* input.
- ▶ Let $\mathbf{x} \in \mathbb{R}^D$ denote a *multivariate* input.
- ▶ Same for targets $t \in \mathbb{R}$ and $\mathbf{t} \in \mathbb{R}^K$.
- ▶ Same for outputs $y \in \mathbb{R}$ and $\mathbf{y} \in \mathbb{R}^K$.
- Let θ denote the set of *all* learnable parameters of a machine learning model.

Loss Functions for Machine Learning Regression

▶ Univariate

$$L(\theta) = \frac{1}{2} \sum_{n=1}^{N} (y_n - t_n)^2$$

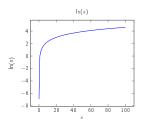
Multivariate

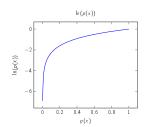
$$L(\theta) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{t}_n\|^2$$

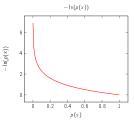
- ▶ Known as half-sum-squared-error (SSE) or ℓ_2 -loss.
- ► Verify that both losses are 0 when outputs match targets for all n. Otherwise, both losses are greater than 0.

Probability and Negative of Natural Logarithm

- Logarithm is a monotonically increasing function.
- Probability lies between 0 and 1.
- Between 0 and 1, logarithm is negative.
- ▶ So $-\ln(p(x))$ approaches ∞ for p(x) = 0 and 0 for p(x) = 1.
- Can be used as a loss function.







Loss Functions for Machine Learning Binary Classification

- ► For two-class classification, targets can be binary.
 - $t_n = 0$ if \mathbf{x}_n belongs to class C_0 .
 - $t_n = 1$ if \mathbf{x}_n belongs to class C_1 .
- If output y_n can be restricted to lie between 0 and 1, we can treat it as probability of \mathbf{x}_n belonging to class \mathcal{C}_1 . That is, $y_n = P(\mathcal{C}_1|\mathbf{x}_n)$.
- ▶ Then $1 y_n = P(\mathcal{C}_0 | \mathbf{x}_n)$.
- Ideally.
 - \triangleright y_n should be 1 if $\mathbf{x}_n \in \mathcal{C}_1$, and
 - ▶ $1 y_n$ should be 1 if $\mathbf{x}_n \in \mathcal{C}_0$.
- Equivalently,
 - ightharpoonup In y_n should be 0 if $\mathbf{x}_n \in \mathcal{C}_1$, and
 - $ightharpoonup \ln(1 y_n)$ should be 0 if $\mathbf{x}_n \in \mathcal{C}_0$.

Loss Functions for Machine Learning Binary Classification

- ▶ So depending upon t_n , either $-\ln y_n$ or $-\ln(1-y_n)$ should be considered as loss.
- \triangleright Using t_n to pick the relevant loss, we can write total loss as

$$L(\theta) = -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln(1 - y_n)$$

- Known as binary cross-entropy (BCE) loss.
- ▶ Verify that BCE loss is 0 when outputs match targets for all n. Otherwise, loss is greater than 0.

Loss Functions for Machine Learning Multiclass Classification

- ► For multiclass classification, targets can be represented using 1-of-K coding. Also known as 1-hot vectors.
 - ▶ 1-hot vector: only one component is 1. All the rest are 0
 - ▶ If $t_{n3} = 1$, then \mathbf{x}_n belongs to class 3.
- ▶ If outputs of K neurons can be restricted to

 - 1. $0 \le y_{nk} \le 1$, and 2. $\sum_{k=1}^{K} y_{nk} = 1$,

then we can *treat* outputs as probabilities.

► Later, we shall see activation functions that produce per-class probability values.

$$\mathbf{t}_n = egin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{y}_n = \begin{bmatrix} P(\mathcal{C}_1 | \mathbf{x}_n) \\ P(\mathcal{C}_2 | \mathbf{x}_n) \\ P(\mathcal{C}_3 | \mathbf{x}_n) \\ P(\mathcal{C}_4 | \mathbf{x}_n) \\ P(\mathcal{C}_5 | \mathbf{x}_n) \end{bmatrix}$$

Loss Functions for Machine Learning Multiclass Classification

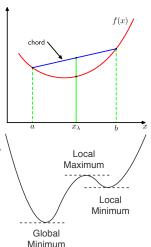
Similar to BCE loss, we can use t_{nk} to *pick* the relevant negative log loss and write overall loss as

$$L(\theta) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln y_{nk}$$

- ► Known as multiclass cross-entropy (MCE) loss.
- ► Verify that MCE loss is 0 when outputs match targets for all n. Otherwise, loss is greater than 0.

Convexity

- \blacktriangleright A function f(x) is *convex* if *every* chord lies on or above the function
- Can be minimized by finding stationary point. There will only be one.
- Loss functions for neural networks are not convex.
- They have multiple local minima and maxima.
- ► Can be minimized via gradient descent.



Second Derivative

- First derivative equal to zero determines stationary points.
- Second derivative distinguishes between maxima and minima.
 - At maximum, second derivative is negative.
 - At minimum, second derivative is positive.
- ▶ But all of the above applies to functions in 1-dimension.
- In higher dimensions, stationary point is still defined by $\nabla f = \mathbf{0}$.
- ▶ But there will be a second derivative in each dimension some might be positive and some negative.
- ► So how can we distinguish between maxima and minima in higher dimensions?

Higher Dimensions

▶ In D-dimensions, maxima and minima are distinguished via a special $D \times D$ matrix of second derivatives known as the Hessian matrix.

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_D} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_D} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_D \partial x_1} & \frac{\partial^2 f}{\partial x_D \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_D \partial x_D} \end{bmatrix}$$

- ▶ If $\mathbf{x}^T \mathbf{H} \mathbf{x} \ge 0$ for all $\mathbf{x} \ne \mathbf{0}$, then \mathbf{H} is positive semi-definite.
- ► This is equivalent to **H** having *non-negative eigenvalues*.

If Hessian matrix at a stationary point x is positive semi-definite, then x is a (local) minimizer of f.

Matrix and Vector Derivatives

For scalar function $f \in \mathbb{R}$,

$$\nabla_{\mathbf{v}} f = \frac{\partial f}{\partial \mathbf{v}} = \begin{bmatrix} \frac{\partial f}{\partial v_1} & \frac{\partial f}{\partial v_2} & \dots & \frac{\partial f}{\partial v_D} \end{bmatrix}$$

$$\nabla_{\mathbf{M}} f = \frac{\partial f}{\partial \mathbf{M}} = \begin{bmatrix} \frac{\partial f}{\partial M_{11}} & \frac{\partial f}{\partial M_{12}} & \dots & \frac{\partial f}{\partial M_{1n}} \\ \frac{\partial f}{\partial M_{21}} & \frac{\partial f}{\partial M_{22}} & \dots & \frac{\partial f}{\partial M_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial M_{m1}} & \frac{\partial f}{\partial M_{m2}} & \dots & \frac{\partial f}{\partial M_{mn}} \end{bmatrix}$$

For vector function $\mathbf{f} \in \mathbb{R}^K$,

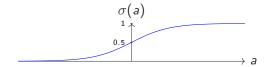
$$\nabla_{\mathbf{v}} \mathbf{f} = \begin{bmatrix} \nabla_{\mathbf{v}} f_1 \\ \nabla_{\mathbf{v}} f_2 \\ \vdots \\ \nabla_{\mathbf{v}} f_K \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial v_1} & \frac{\partial f_1}{\partial v_2} & \cdots & \frac{\partial f_1}{\partial v_D} \\ \frac{\partial f_2}{\partial v_1} & \frac{\partial f_2}{\partial v_2} & \cdots & \frac{\partial f_2}{\partial v_D} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_K}{\partial v_1} & \frac{\partial f_K}{\partial v_2} & \cdots & \frac{\partial f_K}{\partial v_D} \end{bmatrix}$$

Activation Functions

- Recall that a perceptron has a non-differentiable activation function, i.e., step function.
 - Zero-derivative everywhere except at 0 where it is non-differentiable.
- Prevents gradient descent.
- Can we use a smooth activation function that behaves similar to a step function?
- Perceptron with a smooth activation function is called a neuron.
- Neural networks are also called multilayer perceptrons (MLP) even though they do not contain any perceptron.

Logistic Sigmoid Function

- ▶ For $a \in \mathbb{R}$, the *logistic sigmoid* function is given by $\sigma(a) = \frac{1}{1+e^{-a}}$
- Sigmoid means S-shaped.
- ▶ Maps $-\infty \le a \le \infty$ to the range $0 \le \sigma \le 1$. Also called *squashing* function.
- Can be treated as a probability value.
- ▶ Symmetry $\sigma(-a) = 1 \sigma(a)$. Prove it.
- ▶ Easy derivative $\sigma' = \sigma(1 \sigma)$. Prove it.



Activation Functions

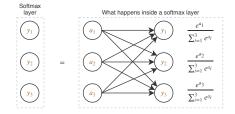
Regression

- ▶ Univariate: use 1 output neuron with identity activation function y(a) = a.
- Multivariate: use K output neurons with identity activation functions $y(a_k) = a_k$.

Classification

- ▶ Binary: use 1 output neuron with logistic sigmoid $y(a) = \sigma(a)$.
- ▶ Multiclass: use K output neurons with *softmax* activation function.

Softmax Activation Function



 \triangleright For real numbers a_1, \ldots, a_K , the softmax function is given by

$$y(a_k; a_1, a_2, ..., a_K) = \frac{e^{a_k}}{\sum_{i=1}^K e^{a_i}}$$

 Output of k-th neuron depends on activations of all neurons in the same layer

Softmax Activation Function

- ▶ Softmax is ≈ 1 when $a_k >> a_j \ \forall j \neq k$ and ≈ 0 otherwise.
- ▶ Provides a smooth (differentiable) approximation to finding the *index of* the maximum element.
 - ► Compute softmax for 1, 10, 100.
 - Does not work everytime.
 - ► Compute softmax for 1, 2, 3. Solution: multiply by 100.
 - Compute softmax for 1,10,1000. Solution: subtract maximum before computing softmax.
- ► Also called the *normalized exponential* function.
- ▶ Since $0 \le y_k \le 1$ and $\sum_{k=1}^K y_k = 1$, softmax outputs can be treated as probability values.
- ▶ Show that $\frac{\partial y_k}{\partial a_i} = y_k(\delta_{jk} y_j)$ where $\delta_{jk} = 1$ if j = k and 0 otherwise.

Summary

- ▶ Inputs and outputs can be univariate as well multivariate.
- Regression requires SSE loss.
- Classification requires cross-entropy loss.
- Minimization corresponds to finding the point where derivate of loss is zero.
- Matrix and vector calculus makes calculations and computation cleaner and faster.
- Next lecture: Training MLPs.