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Vector Calculus Eigenvectors Optimization

Notation

I Scalars are denoted by lower-case letters like s, a, b.

I Vectors are denoted by lower-case bold letters like x, y, v.

I Matrices are denoted by upper-case bold letters like M,D,A.

I Any vector x ∈ Rd is by default a column vector.

x =


x1
x2
...
xd


I The corresponding row vector is obtained as xT =

[
x1 x2 . . . xd

]
.
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Inner Product

For vectors x, y ∈ Rd

I Inner product is a scalar value.

xTy = x1y1 + x2y2 + · · ·+ xdyd = ‖x‖‖y‖ cos θ

where θ is the angle between vectors x and y.
I Also called dot product or scalar product. Other representations:

x · y, (x, y) and < x, y >

I Represents similarity of vectors.
I If xTy = 0, then x and y are orthogonal vectors (in 2D, this means they

are perpendicular).
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Euclidean Norm

I Euclidean norm of vector

‖x‖ =
√
xTx =

√
x1x1 + x2x2 + · · ·+ xdxd

represents the magnitude of the vector.

I Euclidean distance between points x and y can be computed as

‖x− y‖ =
√

(x− y)T (x− y)

=
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xd − yd )2

I Unit vector has norm 1. Also called normalised vector.

I If ‖x‖ = 1 and ‖y‖ = 1, and xTy = 0, then x and y are orthonormal

vectors.
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Outer Product

For vectors x ∈ Rd and z ∈ Rk

I Outer-product xzT is a d × k matrix.

xzT =


x1
x2
...
xd

 [z1 z2 . . . zk
]
=


x1z1 x1z2 . . . x1zk
x2z1 x2z2 . . . x2zk
...

...
...

...
xdz1 xdz2 . . . xdzk
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Matrix and Vector Calculus

For vector x ∈ Rd , scalar function f (x) and vector function g(x) ∈ Rk

I The gradient operator d
dx is also written as ∇x or simply ∇ when the

di�erentiation variable is implied.

I ∇x =


∂
∂x1
∂
∂x2
...
∂
∂xd

 so that ∇x(f (x)) =
d
dx(f (x)) =


∂f (x)
∂x1
∂f (x)
∂x2
...

∂f (x)
∂xd



I ∇x(g(x)) =
d
dx(g(x)) =


∂g1(x)
∂x1

∂g2(x)
∂x1

. . . ∂gk(x)
∂x1

∂g1(x)
∂x2

∂g2(x)
∂x2

. . . ∂gk(x)
∂x2

...
...

. . .
...

∂g1(x)
∂xd

∂g2(x)
∂xd

. . . ∂gk(x)
∂xd
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Matrix and Vector Calculus

For vectors x, y ∈ Rd and matrices M ∈ Rk×d and A ∈ Rd×d

1. ∇x(y
Tx) = ∇x(x

Ty) = y

2. ∇x(Mx) = MT

3. ∇x(x
TAx) = (A+ AT )x

4. For symmetric A, ∇x(x
TAx) = 2Ax
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Matrix and Vector Calculus
Proof of ∇x(y

Tx) = ∇x(x
Ty) = y

First note that

yTx = xTy = x1y1 + x2y2 + · · ·+ xdyd (1)

which is a scalar value.

∇x

(
xTy

)
= ∇x(x1y1 + x2y2 + · · ·+ xdyd ) (2)

=


d
dx1

(x1y1 + x2y2 + · · ·+ xdyd )
d
dx2

(x1y1 + x2y2 + · · ·+ xdyd )
...

d
dxd

(x1y1 + x2y2 + · · ·+ xdyd )

 =


y1
y2
...
yd

 = y (3)
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Matrix and Vector Calculus
Proof of ∇x(Mx) = MT

Let mT
i denote the i-th row of matrix M. Then we can write

∇x (Mx) = ∇x


mT

1 x

mT
2 x
...

mT
k x

 (4)

=
[
∇x(m

T
1 x) ∇x(m

T
2 x) . . . ∇x(m

T
k x)
]

(5)

=
[
m1 m2 . . . mk

]
= MT (6)
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Matrix and Vector Calculus
Proof of ∇x(x

TAx) = (A+ AT )x

We will use the product rule of di�erentiation. When applied to vectors, the
rule states that

∇x

(
uTv

)
= ∇x (u) v +∇x (v)u (7)

where both u and v are functions of x. For our problem, we will take u = x

and v = Ax. Then we can write

∇x(x
TAx) = (∇xx)Ax+ (∇xAx) x (8)

= (∇xIx)Ax+ (∇xAx) x (9)

= ITAx+ ATx (10)

= Ax+ ATx (11)

= (A+ AT )x (12)
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Matrix and Vector Calculus
Proof of ∇x(x

TAx) = (A+ AT )x

When A is symmetric, AT = A, and therefore (A+AT )x = 2Ax which proves
the last derivative.
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Matrices as linear operators

I In a matrix transformation Mx, components of x are acted upon in a
linear fashion. [

m11 m12

m21 m22

] [
x1
x2

]
=

[
m11x1 +m12x2
m21x1 +m22x2

]
I Every matrix multiplication represents a linear transformation.

I Every linear transformation can be represented as a matrix multiplication.
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Eigenvectors

I When a square matrix M is multiplied with a vector v, the vector is
linearly transformed.

I Rotation/Shearing/Scaling
I Scaling does not change the direction of the vector.

I If vector Mv is only a scaled version of v, then v is called an eigenvector

of M.
I That is, if v is an eigenvector of M then

Mv = λv

where scaling factor λ is also called the eigenvalue of M corresponding to

eigenvector v.

v

Mv

v

Mv

v

Mv

Not an eigenvector Eigenvector Eigenvector
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Minimization

f (x) = x2 + 1

x∗ = 0

Slope = df

dx

∣∣
1
= 2

x = 1 x + df

dx

∣∣
1

Slope = df

dx

∣∣
−1

= −2

x = −1x + df

dx

∣∣
−1

What is the slope/derivative/gradient at the minimizer x∗ = 0?
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Minimization
Local vs. Global Minima

Global
Minimum

Local
Minimum

Local
Maximum

I Stationary point: where derivative is 0.

I A stationary point can be a minimum or a maximum.

I A minimum can be local or global. Same for maximum.
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Constrained Optimization

I For optimizing a function f (x), the gradient of f must vanish at the
optimizer x∗.

∇f |x∗ = 0

I For optimizing a function f (x) subject to some constraint g(x) = 0, the
gradient of the so-called Lagrange function

L(x, λ) = f (x) + λg(x)

must vanish at the optimizer x∗. That is,

∇L(x, λ) = ∇f |x∗ + λ∇g |x∗ = 0

where λ is the Lagrange (or undetermined) multiplier.
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Constrained Optimization

I Quite often, we will need to maximize xTMx with respect to x where M
is a symmetric, positive-de�nite1 matrix.

I Trivial solution: x = inf

I To prevent trivial solution, we must constrain the norm of x. For example,
xTx = 1.

I This gives us a constrained optimization problem.

Maximize f (x) = xTMx subject to the constraint

g(x) = xTx− 1 = 0.

I Lagrangian becomes L(x, λ) = xTMx+ λ(1− xTx)

I Use ∇xL|x∗ = 0 and ∇λL|λ∗ = 0 to solve for optimal x∗.

1
x
T
Mx > 0 for all x 6= 0
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