EC-332 Machine Learning

Nazar Khan

Department of Computer Science University of the Punjab

Maximum Likelihood Estimation

i.i.d

In this lecture ...

- Gaussian distribution
- Gaussian density estimation
- Probabilistic polynomial curve fitting

Gaussian Distribution Univariate

- ► Known as the queen of distributions.
- Also called the Normal distribution since it models the distribution of almost all natural phenomenon.
- ► For continuous variables.

$$\mathcal{N}(x|\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-rac{1}{2\sigma^2}(x-\mu)^2
ight\}$$

where μ is the mean, σ^2 is the variance and σ is the standard deviation.

• Reciprocal of variance, $\beta = \frac{1}{\sigma^2}$ is called *precision*.

Gaussian Distribution Univariate

Figure: Plots of $\mathcal{N}(0, 0.5^2)$, $\mathcal{N}(4, 0.3^2)$ and $\mathcal{N}(1, 2^2)$. Notice that density is not the same as probability and can be greater than 1.

Gaussian Distribution Multivariate

• Multivariate form for D – dimensional vector **x** of continuous variables

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^{D}|\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

where the $D \times D$ matrix Σ is called the *covariance matrix* and $|\Sigma|$ is its determinant.

Gaussian Distribution Multivariate

Figure: Plot of bivariate Gaussian distribution with mean $\mu = (1, 2)^T$ and $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$.

Gaussian Distribution Multivariate

Figure: Plot of bivariate Gaussian distribution with mean $\mu = (1, 2)^T$ and $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$. Marginal distributions $p(x_1)$ and $p(x_2)$ are also shown.

Independent and Identically Distributed

- Let $\mathcal{D} = (x_1, \dots, x_N)$ be a set of N random numbers.
- If value of any x_i does not affect the value of any other x_j, then the x_is are said to be *independent*.
- If each x_i follows the same distribution, then the x_is are said to be identically distributed.
- Both properties combined are abbreviated as *i.i.d*.
- Assuming the x_i s are i.i.d under $\mathcal{N}(\mu, \sigma^2)$

$$p(\mathcal{D}|\mu,\sigma^2) = \prod_{n=1}^N \mathcal{N}(x_n|\mu,\sigma^2)$$

- ► This is known as the *likelihood function* for the Gaussian.
 - Likelihood of observed data given the Gaussian model with parameters (μ, σ^2) .

The Log Function

Figure: The log function is a monotonically increasing function. If $x_1 > x_2$, then $\log(x_1) > \log(x_2)$.

Fitting a Gaussian

- ► Assuming we have i.i.d data D = (x₁,...,x_N), how can we find the parameters of the Gaussian distribution that generated it?
- Find the (μ, σ²) that maximise the likelihood. This is known as the maximum likelihood (ML) approach.
- Since logarithm is a monotonically increasing function, maximising the log of a function is equivalent to maximising the function.
- Logarithm of the Gaussian
 - is a simpler function, and
 - is numerically superior (consider taking product of very small probabilities versus taking the sum of their logarithms).

i.i.d

Log Likelihood

Log likelihood of Gaussian becomes

$$\ln p(\mathcal{D}|\mu,\sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x-\mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

• Maximising w.r.t μ , we get

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

• Maximising w.r.t σ^2 , we get

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2$$

Bias of Maximum Likelihood

- Since $\mathbb{E}\left[\mu_{\textit{ML}}\right] = \mu$, ML estimates the mean correctly.
- ► But since $\mathbb{E}\left[\sigma_{ML}^2\right] = \left(\frac{N-1}{N}\right)\sigma^2$, <u>ML underestimates the variance</u> by a factor $\frac{N-1}{N}$.
- > This phenomenon is called *bias* and lies at the root of over-fitting.

- Our earlier treatment of curve fitting was via error minimization.
- Now we take a probabilistic perspective.
- The real goal: make accurate prediction t for new input x given training data (x, t).
- Prediction implies uncertainty. Therefore, target value can be modelled via a probability distribution.
- ▶ We assume that given x, the target variable t has a Gaussian distribution.

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$
(1)
= $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(t - y(x, \mathbf{w}))^2\right\}$

- ► Knowns: Training set (x, t).
- Unknowns: Parameters **w** and β .
- Assuming training data is i.i.d likelihood function becomes

$$p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n,\mathbf{w}),\beta^{-1})$$

Log of likelihood becomes

n
$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 - \frac{N}{2} \ln \beta^{-1} - \frac{N}{2} \ln(2\pi)$$

• Maximization of likelihood w.r.t **w** is equivalent to minimization of $\frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$.

- ▶ So, assuming $t \sim N$, ML estimation leads to sum-of-squared errors minimisation.
- ► Equivalently, minimising sum-of-squared errors implies t ~ N (i.e., noise was normally distributed).

• \mathbf{w}_{ML} and β_{ML} yields a probability distribution over the prediction t.

$$p(\mathbf{t}|\mathbf{x},\mathbf{w}_{ML},\beta_{ML}) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n,\mathbf{w}_{ML}),\beta_{ML}^{-1})$$

• The polynomial function $y(x, \mathbf{w}_{ML})$ alone only gives a point estimate of t.