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Gaussian Distribution i.i.d Density Estimation via ML Curve Fitting via ML

In this lecture . . .

I Gaussian distribution

I Gaussian density estimation

I Probabilistic polynomial curve �tting
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Gaussian Distribution
Univariate

I Known as the queen of distributions.

I Also called the Normal distribution since it models the distribution of

almost all natural phenomenon.

I For continuous variables.

N (x |µ, σ2) = 1√
2πσ2

exp

{
− 1

2σ2
(x − µ)2

}
where µ is the mean, σ2 is the variance and σ is the standard deviation.

I Reciprocal of variance, β = 1
σ2

is called precision.
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Gaussian Distribution
Univariate
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Figure: Plots of N (0, 0.52), N (4, 0.32) and N (1, 22). Notice that density is not the
same as probability and can be greater than 1.
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Gaussian Distribution
Multivariate

I Multivariate form for D − dimensional vector x of continuous variables

N (x|µ,Σ) =
1√

(2π)D |Σ|
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
where the D × D matrix Σ is called the covariance matrix and |Σ| is its
determinant.
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Gaussian Distribution
Multivariate
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Figure: Plot of bivariate Gaussian distribution with mean µ = (1, 2)T and

Σ =
[
1 0

0
1
4

]
.
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Gaussian Distribution
Multivariate
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Figure: Plot of bivariate Gaussian distribution with mean µ = (1, 2)T and

Σ =
[
1 0

0
1
4

]
. Marginal distributions p(x1) and p(x2) are also shown.
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Independent and Identically Distributed

I Let D = (x1, . . . , xN) be a set of N random numbers.

I If value of any xi does not a�ect the value of any other xj , then the xi s

are said to be independent.

I If each xi follows the same distribution, then the xi s are said to be

identically distributed.

I Both properties combined are abbreviated as i.i.d.

I Assuming the xi s are i.i.d under N (µ, σ2)

p(D|µ, σ2) =
N∏
n=1

N (xn|µ, σ2)

I This is known as the likelihood function for the Gaussian.
I Likelihood of observed data given the Gaussian model with parameters

(µ, σ2).
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The Log Function

ln x

x1

Figure: The log function is a monotonically increasing function. If x1 > x2, then
log(x1) > log(x2).
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Fitting a Gaussian

I Assuming we have i.i.d data D = (x1, . . . , xN), how can we �nd the

parameters of the Gaussian distribution that generated it?

I Find the (µ, σ2) that maximise the likelihood. This is known as the

maximum likelihood (ML) approach.

I Since logarithm is a monotonically increasing function, maximising the log

of a function is equivalent to maximising the function.

I Logarithm of the Gaussian
I is a simpler function, and
I is numerically superior (consider taking product of very small probabilities

versus taking the sum of their logarithms).
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Log Likelihood

I Log likelihood of Gaussian becomes

ln p(D|µ, σ2) = − 1

2σ2

N∑
n=1

(x − µ)2 − N

2
lnσ2 − N

2
ln(2π)

I Maximising w.r.t µ, we get

µML =
1

N

N∑
n=1

xn

I Maximising w.r.t σ2, we get

σ2ML =
1

N

N∑
n=1

(xn − µML)
2
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Bias of Maximum Likelihood

I Since E [µML] = µ, ML estimates the mean correctly.

I But since E
[
σ2ML

]
=
(
N−1
N

)
σ2, ML underestimates the variance by a

factor N−1
N

.

I This phenomenon is called bias and lies at the root of over-�tting.
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Polynomial Curve Fitting
A Probabilistic Perspective

I Our earlier treatment of curve �tting was via error minimization.

I Now we take a probabilistic perspective.

I The real goal: make accurate prediction t for new input x given training

data (x, t).

I Prediction implies uncertainty. Therefore, target value can be modelled

via a probability distribution.

I We assume that given x , the target variable t has a Gaussian distribution.

p(t|x ,w, β) = N (t|y(x ,w), β−1) (1)

=
1√
2πσ2

exp

{
− 1

2σ2
(t − y(x ,w))2

}
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Polynomial Curve Fitting
A Probabilistic Perspective

I Knowns: Training set (x, t).

I Unknowns: Parameters w and β.

I Assuming training data is i.i.d likelihood function becomes

p(t|x,w, β) =
N∏
n=1

N (tn|y(xn,w), β−1)

I Log of likelihood becomes

ln p(t|x,w, β) = −β
2

N∑
n=1

{y(xn,w)− tn}2 −
N

2
lnβ−1 − N

2
ln(2π)

I Maximization of likelihood w.r.t w is equivalent to minimization of
1
2

∑N
n=1{y(xn,w)− tn}2.
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Polynomial Curve Fitting
A Probabilistic Perspective

I So, assuming t ∼ N , ML estimation leads to sum-of-squared errors

minimisation.

I Equivalently, minimising sum-of-squared errors implies t ∼ N (i.e., noise

was normally distributed).
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Polynomial Curve Fitting
A Probabilistic Perspective

I wML and βML yields a probability distribution over the prediction t.

p(t|x,wML, βML) =
N∏
n=1

N (tn|y(xn,wML), β
−1
ML)

I The polynomial function y(x ,wML) alone only gives a point estimate of t.
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