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Boolean Functions Classi�cation Boundaries Continuous Functions

MLP and the XOR Problem

I We have seen that a single perceptron cannot solve the XOR problem
because XOR is not a linear classi�cation problem.
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I No single line can separate the 0s (black) from the 1s (white).
I But 3 perceptrons arranged in 2 layers can solve it.
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Boolean Functions Classi�cation Boundaries Continuous Functions

Perceptrons can do everything!

I In this lecture, we will see that multilayer perceptrons (MLPs) can model

1. any Boolean function,

2. any classi�cation boundary, and

3. any continuous function.
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Boolean Functions Classi�cation Boundaries Continuous Functions

MLPs and Boolean Functions

I A single perceptron can model the basis set {AND, OR, NOT} of logic
gates.
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I All Boolean functions can be written using combinations of these basic
gates.

I Therefore, combinations of perceptrons (MLPs) can model all Boolean
functions.

I However, there is the issue of width.
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Boolean Functions Classi�cation Boundaries Continuous Functions

MLPs and Boolean Functions
Width

x y z f

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

I A Boolean function of N variables has 2N di�erent input
combinations.

I Disjunctive normal form (DNF) models the truth values
(1s only).

f = x̄ ȳ z + x̄y z̄ + xȳ z̄ + xyz

I DNF corresponds to OR of AND gates.
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Reducible DNF
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f = x̄ ȳ z + xȳ z̄ + xȳz + xyz + xy z̄

= x + ȳ z

Irreducible DNF
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f = x̄ ȳ z + x̄y z̄ + xȳ z̄ + xyz

Maximum possible ANDs in DNF is 2N−1.
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Boolean Functions Classi�cation Boundaries Continuous Functions

MLPs and Boolean Functions
Width

I Maximum possible ANDs in DNF is 2N−1.

I Each AND corresponds to one perceptron in the hidden layer.

I So size of hidden layers will be exponential in N.

I OR corresponds to one perceptron in output layer.

Any Boolean function in N variables can be modelled by an MLP using

I 1 hidden layer of 2N−1 AND perceptrons

I followed by 1 OR perceptron.

Exponentially large width can be reduced by adding more layers.
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Boolean Functions Classi�cation Boundaries Continuous Functions

MLPs and Boolean Functions
Depth

I Function f on last slide was actually XOR(x , y , z).
It required 2N−1 + 1 perceptrons using 2-layers
only.

I x ⊕ y ⊕ z can be modelled using pairwise XORs as
(x ⊕ y)⊕ z .

I Corresponds to a deep MLP.
I Deep: more than 2 layers.

I Requires 3(N − 1) perceptrons.

Number of perceptrons required in single hidden
layer MLP is exponential in N.
Number of perceptrons required in deep MLP is
linear in N.
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MLPs and Classi�cation Boundaries

A perceptron divides input space into 2 regions. Dividing boundary is a line.
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Boolean Functions Classi�cation Boundaries Continuous Functions

MLPs and Classi�cation Boundaries

Weights determine the linear boundary and classi�cation into region 1 and
region 2.
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Boolean Functions Classi�cation Boundaries Continuous Functions

MLPs and Classi�cation Boundaries

Yellow region modelled by ANDing 4 linear classi�ers (perceptrons). First layer
contains 4 perceptrons for modelling 4 lines and second layer contains a
perceptron for modelling an AND gate. Source: Bhiksha Raj
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Boolean Functions Classi�cation Boundaries Continuous Functions

MLPs and Classi�cation Boundaries
Non-contiguous

Yellow region equals OR(polygon 1, polygon 2). Each polygon equals AND of
some lines. Each line equals 1 perceptron. Source: Bhiksha Raj

Since inputs and outputs are visible, all layers in-between are known as
hidden layers.
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MLPs and Classi�cation Boundaries
Bene�t of Depth

I Can the region in the last slide be modelled using a single hidden layer?

I Detour � can you model a circular boundary? Yes, via many lines.

Hexagon Dodecagon

I Circle = limk→∞ k-gon.

I As number of sides approaches ∞, regular polygons approximate circles.
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MLPs and Classi�cation Boundaries
Bene�t of Depth

I Any shape can be modelled by �lling it with many circles, where each
circle is modelled via many lines.

I Precision increases as number of circles approaches ∞ and as number of
lines per circle approaches ∞.
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MLPs and Classi�cation Boundaries
Bene�t of Depth

I In other words, shape equals OR(many circles) where each circle equals
AND(many lines).

I Can be done with 1 really really wide hidden layer.

I Adding more layers exponentially reduces the number of required neurons.
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MLPs and Continuous Functions

I MLPs are universal approximators.

A two-layer network with linear outputs can uniformly approximate
any continuous function on a compact input domain to arbitrary
accuracy, provided that the network has a su�ciently large number
of hidden units.

I The next few slides present a proof of this statement.
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Generating a pulse using an MLP

For α, β ∈ R, the pulse can be made in�nitely wide when (β − α)→∞ and
in�nitesimally thin when (β − α)→ 0.
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Generating a pulse using an MLP

Since
∑

wixi + b ≥ 0 =⇒
∑

wixi ≥ −b, we have removed each neuron's
bias b by setting −b as the �ring threshold instead of 0.

Nazar Khan Machine Learning



Boolean Functions Classi�cation Boundaries Continuous Functions

Combining MLP Pulsers

Pulser(7,8)

Pulser(3,4)
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Functions as pulse combinations

Pulse
1

Pulse
5

Pulse
12

Pulse 1

Pulse 2

Pulse 12

Approximation using 12 pulsers. This is similar to approximation of area under
a function using integration as width of strip/pulse δ → 0.
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Functions as pulse combinations

Pulse
1

Pulse
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Pulse
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1

�1
�18
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18

I More pulsers will yield better approximation of the function.

Universal Approximation Theorem

A linear combination of 2-layer perceptrons (pulsers) can approxi-
mate any function to arbitrary precision as long as we use enough

pulsers.

I At the cost of 3 perceptrons per pulse.
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Summary

I MLP with a single hidden layer is a universal approximator of

1. Boolean functions,

2. Classi�cation boundaries, and

3. Continuous functions.

I Size of hidden layer needs to be exponential in number of inputs.

I Adding more layers exponentially reduces the number of neurons.

I Next lecture: learning of weights in a perceptron.
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