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Probability Theory Elementary rules Independence Density Statistics Bayesian View

Probability Theory

I Uncertainty is a key concept in pattern recognition.

I Uncertainty arises due to
I Noise on measurements.
I Finite size of data sets.

I Uncertainty can be quanti�ed via probability theory.

Nazar Khan Machine Learning



Probability Theory Elementary rules Independence Density Statistics Bayesian View

Probability

I P(event) is fraction of times event occurs out of total number of trials.
I P = limN→∞

#successes
N

.

P(B = b) = 0.6

P(B = r) = 0.4

p(apple) = p(F = a) =?

p(blue box given that apple was selected) = p(B = b|F = a) =?
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Terminology

Joint Probability Marginal Probability

Marginal Probability Conditional Probability
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Elementary rules of probability

Elementary rules of probability

I Sum rule: p(X ) =
∑

Y p(X ,Y )

I Product rule: p(X ,Y ) = p(Y |X )p(X )

These two simple rules form the basis of all the probabilistic machinery that

will be used in this course.
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I The sum and product rules can be combined to write

p(X ) =
∑
Y

p(X |Y )p(Y )

I A fancy name for this is Theorem of Total Probability.

I Since p(X ,Y ) = p(Y ,X ), we can use the product rule to write another

very simple rule

p(Y |X ) =
p(X |Y )p(Y )

p(X )

I Fancy name is Bayes' Theorem.

I Plays an important role in machine learning.
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Terminology

P(B = r) = 0.4

P(B = b) = 0.6

I If you don't know which fruit was selected, and I ask you which box was
selected, what will your answer be?

I The box with greater probability of being selected.
I Blue box because P(B = b) = 0.6.
I This probability is called the prior probability.
I Prior because the data has not been observed yet.
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Terminology

P(B = r) = 0.4

P(B = b) = 0.6

I Which box was chosen given that the selected fruit was orange?
I The box with greater p(B|F = o) (via Bayes' theorem).
I Red box
I This is called the posterior probability.
I Posterior because the data has been observed.
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Independence

I If random variable X is independent of random variable Y , then

P(X = x |Y = y) = P(X = x)

for all values x and y .
I Then, by the product rule

P(X ,Y ) = P(X |Y )P(Y ) = P(X )P(Y )

I If joint p(X = x ,Y = y) equals the product of marginals

p(X = x)p(Y = y) for all values x and y , then random variables X and

Y are independent.
I Intuitively, if Y is independent of X , then knowing X does not change the

chances of Y and vice versa.
I Example: if fraction of apples and oranges is same in both boxes, then

knowing which box was selected does not change the chance of selecting

an apple.
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Probability density
Continuous

I So far, our set of events was discrete.

I Probability can also be de�ned for continuous variables via

Prob(x ∈ (a, b)) =

∫ b

a

p(x)dx

I Probability density function p(x)
I is always non-negative, and
I integrates to 1.

Caution: Probability density is not the same as probability. Density can

be greater than 1.
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Probability density
Continuous

I Sum rule: p(x) =
∫
p(x , y)dy .

I Product rule: p(x , y) = p(y |x)p(x)
I Probability density can also be de�ned for a multivariate random variable

x = (x1, . . . , xD).

p(x) ≥ 0∫
x

p(x)dx =

∫
xD

· · ·
∫
x1

p(x1, . . . , xD)dx1 . . . dxD = 1
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Expectation

I Expectation is a weighted average of a function.

I Weights are given by p(x).

E [f ] =
∑
x

p(x)f (x) ←− For discrete x

E [f ] =

∫
x

p(x)f (x)dx ←− For continuous x

I When data is �nite, expectation ≈ ordinary average. Approximation

becomes exact as N →∞ (Law of large numbers).
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Expectation

I Expectation of a function of several variables

E [f (x , y)] =
∑
x ,y

p(x , y)f (x , y)

I Expectation with respect to one variable

Ex [f (x , y)] =
∑
x

p(x)f (x , y) (function of y)

I Conditional expectation

Ex |y [f ] =
∑
x

p(x |y)f (x)
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Variance

I Variance measures variability of a random variable around its mean.

var [f ] = E
[
(f (x)− E [f (x)])2

]
= E

[
(f (x)2

]
− E

[
f (x2)

]
I On average, how far does a random variable stay from its mean?
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Covariance
Univariate

I For 2 univariate random variables occuring in pairs (x , y), covariance
expresses how much x and y vary together.

cov [x , y ] = Ex ,y [{x − E [x ]}{y − E [y ]}]
= Ex ,y [xy ]− E [x ]E [y ]

I For independent random variables x and y , cov [x , y ] = 0. Why?
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Covariance
Multivariate

I For multivariate random variables x ∈ RD and y ∈ RK , cov [x, y] is a
D × K matrix.

I Expresses how each element of x varies with each element of y.

cov [x, y] = Ex,y

[
{x− E [x]}{y − E [y]}T

]
= Ex,y

[
xyT

]
− E [x]E [y]T

=


cov [x1, y1] cov [x1, y2] · · · cov [x1, yK ]
cov [x2, y1] cov [x2, y2] · · · cov [x2, yK ]

...
...

. . .
...

cov [xD , y1] cov [xD , y2] · · · cov [xD , yK ]

 (1)
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Covariance
Multivariate

I Covariance of multivariate x with itself can be written as

cov [x] ≡ cov [x, x].

I cov [x] expresses how each element of x varies with every other element.

cov [x] =


var [x1] cov [x1, x2] · · · cov [x1, xD ]

cov [x2, x1] var [x2] · · · cov [x2, xD ]
...

...
. . .

...

cov [xD , x1] cov [xD , x2] · · · var [xD ]

 (2)
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Bayesian View of Probability

I So far we have considered probability as the frequency of random,

repeatable events.

I What if the events are not repeatable?
I Was the moon once a planet?
I Did the dinosaurs become extinct because of a meteor?
I Will the ice on the North Pole melt by the year 2100?

I For non-repeatable, yet uncertain events, we have the Bayesian view of

probability.
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Bayesian View of Probability

p(w|D) = p(D|w)p(w)
p(D)

I Measures the uncertainty in model w after observing the data D.
I This uncertainty is measured via conditional p(D|w) and prior p(w).

I Treated as a function of w, the conditional probability p(D|w) is also
called the likelihood function.

I Expresses how likely the observed data is for any given model w.
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