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Before we start
A primer on ML

1. Capabilities of polynomials (lines, quadratics, cubics, . . . , degree M).
Degree 1 Degree 2 Degree 3 Degree 9

2. Capability can be reduced by restricting coe�cients.
Degree 1 Degree 2 Degree 3 Degree 9

green curve = blue curve divided by 10
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Before we start
A primer on ML

3. Everything is noisy.

Observation = Reality+ Noise

4. Therefore, zero training error is bad. Over-�tting vs generalisation.

5. Over-�tting can be reduced via regularization.
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Weight Penalties

I Similar to polynomials, networks with large weights are more powerful.

I Therefore, more prone to over�tting.

I So penalise magnitudes of weights to restrict capability.

L̃(w) = L(w) +
λ

2
‖w‖2

I Hyperparameter1 λ controls the level of over�tting.

I Alternative: separately penalise each layer

L̃(w) = L(w) +
L∑

l=1

λl
2
‖w(l)‖2

Not used often due to increased number of hyperparameters.

1Something that is not a parameter but in�uences what the parameters will be.
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Early Stopping

I Split some part of the training set into a validation set that will not be
used for training.

I During training, record loss on training as well as validation set.
I When validation loss starts increasing while training loss is still going

down, the model has started over�tting.
I So stop training at that point.

Validation
Training

Epochs

Loss
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Data Augmentation

I Augment training set with transformed versions of training samples.
I Domain speci�c data augmentations

I Images: Color, Geometry
I Text: Synonyms, Tense, Order
I Speech: Speed, Sound e�ects

https://github.com/albumentations-team/albumentations
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Data Augmentation

https://github.com/aleju/imgaug
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Label Smoothing

I Training adjusts the model to make outputs as close as possible to the
targets/labels.

I So if labels are smoothed a little, over�tting will be reduced.

I For example, if label 0 is mapped to 0.1 and 1 is mapped to 0.9, training
will converge early.

I Training procedure will not try as hard as before to output as close as
possible to 0 or 1.

I Leads to well-calibrated neural networks.
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Dropout

I One of the most used regularization techniques in neural nets.

I During training, a randomly selected subset of activations are set to zero
within each layer.

I This makes the neural network less powerful.

I Dropout layer implementation is very simple.
I For each neuron (including inputs),

1. Generate a uniform random number between 0 and 1.

2. If the number is greater than α, set the neuron's output to 0.

3. Otherwise, don't touch the neuron's output.

I Probably of dropping out is 1− α.
I Remember which neurons were dropped so that gradients are also zeroed

out during backpropagation.
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Detour � Bagging

I Bagging is a popular ML meta-algorithm.

I Multiple ML models are trained separately to solve the same problem on
separate subsets of the training data.

I Final answer is the average of all models.

F (x) =
1

M

M∑
m=1

fm(x)

I Bagging results are usually better than the best individual model.

I Dropout can be viewed as bagging.
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Dropout as Bagging

I An architecture with n neurons can have 2n sub-architectures depending
on which neurons are switched o�.

I Whenever a random subset of neurons is switched o�, we are essentially
training only one of the 2n sub-architectures.

I At test time, use expected output of neuron, E [y ] = αh(a), i.e., bagging.

y 0 h(a)

P(y) 1− α α

I Alternatives:
1. Push α into the next layer's weights after training and do testing as before.

zk =
∑

wkjyj + bk

=
∑

wkjαh(aj) + bk =
∑

(αwkj)︸ ︷︷ ︸
w̃kj

h(aj) + bk

2. During training, multiply every output by 1

α and do testing as before.
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Dropout vs. DropConnect

Figure: Dropout vs. DropConnect3. Image taken from
https://cs.nyu.edu/~wanli/dropc/

3Wan et al., `Regularization of Neural Network using DropConnect'.
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Normalisation

I The importance of normalising inputs is well-understood in ML.
I Improves numerical stability and reduces training time.
I Makes all features equally important before learning takes place.

Normalisation of 2D data. Taken from
http://cs231n.github.io/neural-networks-2/
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Batch Normalisation

I In neural networks, a neuron's input depends on previous neurons' outputs.

I Those outputs can vary wildly during training as the weights are adjusted.

I Normalising the input sample is not enough.

I Later neuron's input needs to be normalised as well.

I Inputs to every neuron in every layer must be normalised in a

di�erentiable manner.

I Normalisation is useless for learning if gradient ignores it.
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Batch Normalisation

I For the i-th input sample, a neuron passes its pre-activation ai into its
activation function h(ai ).

I For a minibatch B, the neuron will perform this step for each input
sample in B separately.

I BatchNorm takes place between this step.
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Batch Normalisation

BN

I Each ai is converted to âi by looking at the other aj values in the
minibatch.

I Instead of ai , the new âi is passed into the activation function.
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Batch Normalisation

Consider a neuron's pre-activations a1, a2, . . . , a|B| over a minibatch B.

1. Compute mean µ =
∑

ai
|B| .

2. Compute variance σ2 =
∑

(ai−µ)2
|B| .

3. Standardize the pre-activations as ui =
ai−µ
σ .

This makes the set u1, u2, . . . , u|B| have zero-mean and unit-variance.

4. Recover expressive power by learnable transformation âi = γui + β.
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Batch Normalisation

The âi values that are now passed into the activation function will have
mean β and standard deviation γ, irrespective of original moments µ and

σ for the minibatch.

The whole process is di�erentiable and therefore suitable for gradient
descent.

Nazar Khan Machine Learning



Regularization Weight Penalties Early Stopping Data Augmentation Label Smoothing Dropout BatchNorm LayerNorm

Bene�ts of BatchNorm

I Avoids vanishing gradients for sigmoidal non-linearities.

I Allows much higher learning rates and therefore dramatically speeds up
training.

I Reduces dependence on good weight initialisation.

I Regularizes the model and reduces the need for dropout.
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BatchNorm at testing time

I Testing is not done on minibatches.

I But each neuron trained itself on batchnormed pre-activations.

I It expects batchnormed pre-activations at testing time as well.

I Solution: Once the network is trained, for each neuron, compute the
average µ, σ2 over the set S of all training minibatches.

µtest =
1

|S|
∑
B∈S

µ(B)

σ2

test =
|B|
|B| − 1

1

|S|
∑
B∈S

σ2(B)

I |B|
|B|−1 for computing unbiased estimator of variance.

I Use µtest, σtest to normalize every testing sample.
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Layer Normalization

I BatchNorm violates the i.i.d assumption by making one training sample's
output dependent on other randomly chosen training samples.

I LayerNorm is an alternative method that normalizes based on the
activations of a layer for a single training sample as

ui =
ai − µ
σ

where µ = 1

M

∑M
i=1

ai and σ =
√

1

M

∑M
i=1

(ai − µ)2 are computed from

the activations a1, a2, . . . , aM for a layers with M neurons.

I Improves training time and generalization performance of models dealing
with sequential data (RNNs and Transformers).

I No constraint on mini-batch size. Can work with batch size of 1 (online
training).

I Same operations at training and testing time.
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Summary

I All data contains noise.

I Given enough power, a neural network will model noise as well.

I Restricting the network's power allows it to model the underlying
behaviour of data instead of noise.

I This reduces over-�tting on training data and improves generalisation of
the network on unseen data.
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