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Statistics Bayesian View

Expectation

I Expectation is a weighted average of a function.

I Weights are given by p(x).

E [f ] =
∑
x

p(x)f (x) ←− For discrete x

E [f ] =

∫
x

p(x)f (x)dx ←− For continuous x

I When data is �nite, expectation ≈ ordinary average. Approximation

becomes exact as N →∞ (Law of large numbers).
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Statistics Bayesian View

Expectation

I Expectation of a function of several variables

E [f (x , y)] =
∑
x ,y

p(x , y)f (x , y)

I Expectation with respect to one variable

Ex [f (x , y)] =
∑
x

p(x)f (x , y) (function of y)

I Conditional expectation

Ex |y [f ] =
∑
x

p(x |y)f (x)
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Statistics Bayesian View

Variance

I Variance measures variability of a random variable around its mean.

var [f ] = E
[
(f (x)− E [f (x)])2

]
= E

[
(f (x)2

]
− E

[
f (x2)

]
I On average, how far does a random variable stay from its mean?
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Statistics Bayesian View

Covariance
Univariate

I For 2 univariate random variables occuring in pairs (x , y), covariance
expresses how much x and y vary together.

cov [x , y ] = Ex ,y [{x − E [x ]}{y − E [y ]}]
= Ex ,y [xy ]− E [x ]E [y ]

I For independent random variables x and y , cov [x , y ] = 0. Why?
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Statistics Bayesian View

Covariance
Multivariate

I For multivariate random variables x ∈ RD and y ∈ RK , cov [x, y] is a
D × K matrix.

I Expresses how each element of x varies with each element of y.

cov [x, y] = Ex,y

[
{x− E [x]}{y − E [y]}T

]
= Ex,y

[
xyT

]
− E [x]E [y]T

=


cov [x1, y1] cov [x1, y2] · · · cov [x1, yK ]
cov [x2, y1] cov [x2, y2] · · · cov [x2, yK ]

...
...

. . .
...

cov [xD , y1] cov [xD , y2] · · · cov [xD , yK ]

 (1)

Nazar Khan Machine Learning



Statistics Bayesian View

Covariance
Multivariate

I Covariance of multivariate x with itself can be written as

cov [x] ≡ cov [x, x].

I cov [x] expresses how each element of x varies with every other element.

cov [x] =


var [x1] cov [x1, x2] · · · cov [x1, xD ]

cov [x2, x1] var [x2] · · · cov [x2, xD ]
...

...
. . .

...

cov [xD , x1] cov [xD , x2] · · · var [xD ]

 (2)
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Statistics Bayesian View

Bayesian View of Probability

I So far we have considered probability as the frequency of random,

repeatable events.

I What if the events are not repeatable?
I Was the moon once a planet?
I Did the dinosaurs become extinct because of a meteor?
I Will the ice on the North Pole melt by the year 2100?

I For non-repeatable, yet uncertain events, we have the Bayesian view of

probability.
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Statistics Bayesian View

Bayesian View of Probability

p(w|D) = p(D|w)p(w)

p(D)

I Measures the uncertainty in model w after observing the data D.
I This uncertainty is measured via conditional p(D|w) and prior p(w).

I Treated as a function of w, the conditional probability p(D|w) is also
called the likelihood function.

I Expresses how likely the observed data is for any given model w.
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