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Dynamic Data RNN Fprop Transformers

Static vs. Dynamic Inputs

I Static signals, such as an image, do not change over time.
I Ordered with respect to space.
I Output depends on current input.

I Dynamic signals, such as text, audio, video or stock price change over
time.

I Ordered with respect to time.
I Output depends on current input as well as past (or even future) inputs.
I Also called temporal, sequential or time-series data.
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Context in Text

`The Taj ____ was commissioned by Shah Jahan in 1631, to be built in

the memory of ___ wife Mumtaz Mahal, who died on 17 June that year,

giving birth to their 14th child, Gauhara Begum. Construction started in

1632, and the mausoleum was completed ___ 1643.'
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Context in Text

The following are the contents of a viral email from 2003.

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in

waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the

frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses

and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn

mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.
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Context in Video
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Context in Audio
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Time-series Data

I A single input will be a series of vectors x1, x2, . . . , xT .
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Input component at time t forward propagated through a network.
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Representational Shortcut 1 � Space Folding
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Each box represents a layer of neurons.
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Recurrent Neural Networks
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I A recurrent neural network (RNN) makes hidden state at time t directly

dependent on the hidden state at time t − 1 and therefore indirectly on all

previous times.
I Output yt depends on all that the network has already seen so far.
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Representational Shortcut 2 � Time Folding
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Recurrent Neural Networks

3 sets of
weights
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W 1h(t) + b1)

h(t) = tanh(W 0x(t) +W 11h(t−1) + b0︸ ︷︷ ︸
a0(t)

)

Nazar Khan Machine Learning



Dynamic Data RNN Fprop Transformers

Sequence Mappings

One-to-many Many-to-one

Messi jumping over Marcello

kill

Hate speech

all XLet's

Image caption generation Sentiment classi�cation
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Sequence Mappings

Many-to-many Many-to-many delayed

He

Pronoun Verb Adjective

is crazy He

Está

is crazy

loco

POS tagging Language translation
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Loss Functions for Sequences

I For recurrent nets, loss is between series of output and target vectors.

That is L({y(1), . . . , y(T )}, {t(1), . . . , t(T )}).

Loss/divergence function

Forward propagation in an RNN unfolded in time.

I Notice that loss L can be computed only after y(T ) has been computed.
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Loss Functions for Sequences

I Loss is not necessarily decomposable.
I In the following, we will assume decomposable loss

L =
∑T

t=1 L(y(t), t(t)).
I In both cases, as long as ∂L

∂y(t)
has been computed, backpropagation can

proceed.

Loss/divergence function
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Forward Propagation Through Time

Loss/divergence function

Forward propagation in an RNN unfolded in time. Recurrence between hidden

states through pre-activation a(t) is shown in red.
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Forward Propagation Through Time

Loss/divergence function

Forward propagation in an RNN unfolded in time. Recurrence between hidden

states through pre-activation a(t) is shown in red.
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The problem with RNNs

I Recurrence is a sequential process.

I It cannot be parallelized.

I Makes training slow.
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Self-attention and Transformers1

I A sequence-to-sequence model without convolution and without

recurrence.

I Instead of looking at previous inputs, look at all inputs.

I Transformer contains parallelizable modules and can therefore be trained

faster.

I Transformers achieve state-of-the-art performance on sequence modelling

tasks.

1Ashish Vaswani et al. `Attention is All You Need'. In: Proceedings of the 31st

International Conference on Neural Information Processing Systems. NIPS'17. Long Beach,

California, USA, 2017, 6000�6010.
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Self-attention

Zaid slapped Khalid

Self-attention

We will assume 512-dimensional input embeddings x(t) as well as

512-dimensional encodings z(t).
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Positional Encoding

I Transformers have no recurrence, so positional encodings are added:

P(pos,2i) = sin(pos/100002i/d )

P(pos,2i+1) = cos(pos/100002i/d )

I pos: index of the token in the sequence. For example, if a word is the

third word in a sentence, its pos would be 2 (since indexing is 0-based).

I d : dimension of the embedding vector (typically 512).

I i : index within embedding vector. Ranges from 0 to d − 1.

I 10000 is an arbitrary scaling factor large enough to ensure positional

information is spread out across di�erent frequencies.

I The term 100002i/d changes the wavelength of the sine and cosine

functions so that di�erent dimensions of the positional encodings capture

positional dependencies at di�erent scales.
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Positional Encodings
Intuition

I The sine and cosine functions generate a unique positional encoding for

each word position.

I The frequency of the functions is controlled by the exponent term 2i/d ,
which varies across the dimensions.

I Even dimensions (2i) use the sine function, while odd dimensions (2i + 1)
use the cosine function.

I This design allows each position to be uniquely represented in a

continuous way, and it enables the model to learn relative positions, not

just absolute ones.
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Self-attention

1. Place embeddings of all words in a matrix E ∈ R512×T in

.

2. Add positional encodings.

3. Consider 3 learnable matrices WQ ,WK ∈ R64×512 and WV ∈ R512×512

and apply linear transformations

Q = WQE ∈ R64×T in

K = WKE ∈ R64×T in

V = WVE ∈ R512×T in

to each word. Parallelizable in time.

4. Compute similarity scores between the representations in Q and K .

S = row-wise softmax

(
QTK√

64

)
∈ RT in×T in
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Self-attention

5. Compute the encoding of each word

Z = VST ∈ R512×T in

where each column of Z is a 512-dimensional encoding of the

corresponding word.

Note that each word has now been encoded by attending to all words

in the sentence.

The scaled dot-product scores in S are the attention weights.
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Self-attention
Additional details

Self-attention

Zaid slapped Khalid

LayerNorm LayerNorm LayerNorm
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Multi-headed attention

I Replicate 8 self-attention modules, each with its own learnable matrices

WQi ,WKi ,WVi .

I Compute encodings Z1, . . . ,Z8.

I Compute �nal encoding Z by concatenating the Zi and projecting onto

512-dimensional space using another learnable matrix WO ∈ R512×(512∗8).

Z = WO


Z1

Z2
...

Z8


I This way, the model can learn 8 di�erent ways of encoding the input

sentence.
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Feed-forward NN

I Pass each encoding in Z through the same 2-layer network.

E = W2 ∗ ReLU(W1Z + b11
T ) + b21

T

where W1 has 2048 rows and W2 has 512 rows.

I Add residual connection.

E = W2 ∗ ReLU(W1Z + b11
T ) + b21

T+Z

I Perform LayerNorm on each column of E .

I Parallelizable in time.
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Stacked Encoders

I An encoder involves the transformation

Embeddings −→ Self-attention −→ FFNN −→ Encodings

I Encoders can be stacked on top of each other.

I Encoding produced by one encoder becomes the input embedding for the

next encoder.

I Final encoded output is the result of the last encoder.
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From Encoder to Decoder
Cross-Attention

I Cross-attention is used in the Transformer decoder to attend to encoder

outputs.

I In the decoder:
I Queries (Q) come from the decoder's previous layer.
I Keys (K ) and Values (V ) come from the encoder's output.

I The mechanism allows the decoder to focus on relevant parts of the input

sequence while generating each token.

I The attention weights determine which encoded input tokens are most

in�uential for the current decoding step.
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From Encoder to Decoder
Cross-Attention

Linear + Softmax

Encoder 6
Encoder 5
Encoder 4
Encoder 3
Encoder 2
Encoder 1

Decoder 6
Decoder 5
Decoder 4
Decoder 3
Decoder 2
Decoder 1

Encoders

Decoders
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Inside a Decoder

Self-attention

Layer
Norm

Layer
Norm

Layer
Norm

Layer
Norm

Layer
Norm

FFNN

Layer
Norm

FFNN

Layer
Norm

FFNN

Layer
Norm

FFNN

Layer
Norm

Layer
Norm

Layer
Norm

Layer
Norm

Encoder-decoder-attention
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Decoder and the future

I Self-attention in decoder attends only to the words generated so far in the

output sequence.

I Achieved by setting future times to −∞ in the softmax.

Nazar Khan Machine Learning



Dynamic Data RNN Fprop Transformers

Summary

I Transformers represent the state of the art in deep learning architectures.

I Key progress is due to self-attention � representation of token at any time
depends on tokens at all other times.

I Complete input sequence observed in one go. Therefore, long-term context.
I No sequential processing. Therefore, parallelizable and fast.

I Regularization through layer normalization to retain parallelism.

I Multiple attention heads for attending in di�erent ways.

I Positional encoding to exploit sequential order.
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