Quiz 3

Name: _

_ Roll Number: _

1. (5 points) In the binary cross-entropy function

$$L(\mathbf{W}) = -\frac{1}{N} \sum_{n=1}^{N} t_n \ln(y_n) + (1 - t_n) \ln(1 - y_n)$$
(1)

- (a) W is all the learnable parameters
- (b) N is the number of training examples
- (c) t_n is the actual class of training sample \mathbf{x}_n
- (d) y_n is the probability of class 1 given input sample \mathbf{x}_n
- (e) the expression inside the sum selects the -ve log probability of <u>the correct class</u>
- 2. (5 points) (a) Describe the output layer of neural networks for the following problems. Your description must include i) the number of neurons, and ii) the type of activation functions.
 - i. (1 point) Classification of images of chairs, sofas and tables.

3 neurons with softmax activations.

ii. (1 point) Learning a vector function $\mathbf{f} \in \mathbb{R}^{13}$.

13 neurons with linear activations.

(b) (3 points) The softmax function for K inputs a_1, a_2, \ldots, a_K is written as

$$y_k = \frac{e^{a_k}}{\sum_{j=1}^K e^{a_j}}$$

Prove that the softmax function outputs multiclass probabilities. You must show that

- 1. each output $y_k \ge 0$,
- 2. each output $y_k \leq 1$, and
- 3. sum of outputs y_1, \ldots, y_K is exactly 1.
 - 1. $y_k > 0$ since $e^x > 0 \forall x$ and therefore numerator and denominator are both positive.
 - 2. $y_k \leq 1$ since denominator contains the numerator plus some non-negative terms.
 - 3. Sum of all outputs is

$$y_{1} + y_{2} + \dots + y_{K}$$

$$= \frac{e^{a_{1}}}{\sum_{j=1}^{K} e^{a_{j}}} + \frac{e^{a_{2}}}{\sum_{j=1}^{K} e^{a_{j}}} + \dots + \frac{e^{a_{K}}}{\sum_{j=1}^{K} e^{a_{j}}}$$

$$= \frac{\sum_{k=1}^{K} e^{a_{k}}}{\sum_{j=1}^{K} e^{a_{j}}}$$

$$= 1$$

Since $0 \le y_k \le 1 \forall k$ and since $\sum_{k=1}^{K} y_k = 1$, outputs of the softmax function represent multiclass probabilities.