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Introduction

Machine Learning and Pattern Recoginition are different names for
essentialy the same thing.

I Pattern Recognition arose out of Engineering.
I Machine Learning arose out of Computer Science.
I Both are concerned with automatic discovery of regularities in

data

Nazar Khan Machine Learning

Introduction Example Probability Theory Bayesian View

Machine Learning

Machine Learning

Supervised

Classification Regression

Unsupervised

Clustering Density
Estimation

Dimensionality
Reduction

Reinforcement
Learning

Nazar Khan Machine Learning

Introduction Example Probability Theory Bayesian View

Supervised Learning

I Classification: Assign x to discrete categories.
I Examples: Digit recognition, face recognition, etc..

I Regression: Find continuous values for x.
I Examples: Price prediction, profit prediction.
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Unsupervised Learning

I Clustering: Discover groups of similar examples.
I Density Estimation: Determine probability distribution of

data.
I Dimensionality Reduction: Map data to a lower dimensional

space.
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Reinforcement Learning

I Find actions that maximise a reward. Examples: chess playing
program competing against a copy of itself.

I Active area of ML research.
I We will not be covering reinforcement learning in this course.
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Classical Algorithms vs. Machine Learning

Problem: Given an image x of a digit, classify it between
0, 1, . . . , 9.

Non-trivial due to high variability in hand-writing.

Nazar Khan Machine Learning

Introduction Example Probability Theory Bayesian View

Classical Algorithms vs. Machine Learning

Classical Approach: Make hand-crafted rules or heuristics for
distinguishing digits based on shapes of strokes.
Problems:

I Need lots of rules.
I Exceptions to rules and so on.
I Almost always gives poor results.
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Classical Algorithms vs. Machine Learning

ML Approach:
I Collect a large training set x1, . . . , xN of hand-written digits

with known labels t1, . . . , tN .
I Learn/tune the parameters of an adaptive model.

I The model can adapt so as to reproduce correct labels for all
the training set images.
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Classical Algorithms vs. Machine Learning

I Every sample x is mapped to f (x).
I ML determines the mapping f during the training phase.

Also called the learning phase.
I Trained model f is then used to label a new test image xtest

as f (xtest).
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Terminology

I Generalization: ability to correctly label new examples.
I Very important because training data can only cover a tiny

fraction of all possible examples in practical applications.
I Pre-processing: Transform data into a new space where

solving the problem becomes
I easier, and
I faster.

Also called feature extraction. The extracted features should
I be quickly computable, and
I preserve useful discriminatory information.
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Essential Topics for ML

1. Probability theory – deals with uncertainty.
2. Decision theory – uses probabilistic representation of

uncertainty to make optimal predictions.
3. Information theory
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Example: Polynomial Curve Fitting

Problem: Given N observations of input xi with corresponding
observations of output ti , find function f (x) that predicts t for a
new value of x .
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First, let’s generate some data.

N=10;
x=0:1/(N-1):1;
t=sin(2*pi*x);
plot(x,t,’o’);

Notice that the data is generated through the function sin(2πx).
Real-world observations are always ’noisy’.
Let’s add some noise to the data

n=randn(1,N)*0.3;
t=t+n;
plot(x,t,’o’);

Nazar Khan Machine Learning

Introduction Example Probability Theory Bayesian View

Real-world Data

Real-world data has 2 important properties
1. underlying regularity,
2. individual observations are corrupted by noise.

Learning corresponds to discovering the underlying regularity of
data (the sin(·) function in our example).

Nazar Khan Machine Learning

Introduction Example Probability Theory Bayesian View

Polynomial curve fitting

I We will fit the points (x , t) using a polynomial function

y(x ,w) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑
j=0

wjx
j

where M is the order of the polynomial.
I Function y(x ,w) is a

I non-linear function of the input x , but
I a linear function of the parameters w.

I So our model y(x ,w) is a linear model.
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Polynomial curve fitting

I Fitting corresponds to finding the optimal w. We denote it as
w∗.

I Optimal w∗ can be found by minimising an error function

E (w) =
1
2

N∑
n=1

{y(xn,w)− tn}2

I Can E (w) ever be negative?
I Can E (w) ever be zero?
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Geometric interpratation of the sum-of-squares error function.
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Over-fitting

I Lower order polynomials can’t capture the variation in data.
I Higher order leads to over-fitting.

I Fitted polynomial passes exactly through each data point.
I But it oscillates wildly in-between.
I Gives a very poor representation of the real underlying

function.

I Over-fitting is bad because it gives bad generalization.
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Over-fitting

I To check generalization performance of a certain w∗, compute
E (w∗) on a new test set.

I Alternative performance measure: root-mean-square error
(RMS)

ERMS =

√
2E (w∗)

N

I Mean ensures datasets of different sizes are treated equally.
I Square-root brings the squared error scale back to the scale of

the target variable t.
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Root-mean-square error on training and test set for various
polynomial orders M.
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Paradox

I A polynomial of order M contains all polynomials of lower
order.

I So higher order should always be better than lower order.
I BUT, it’s not better. Why?

I Because higher order polynomial starts fitting the noise instead
of the underlying function.
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Over-fitting

I Typical magnitude of the polynomial coefficients is increasing
dramatically as M increases.

I This is a sign of over-fitting.
I The polynomial is trying to fit the data points exaclty by

having larger coefficients.
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Over-fitting

I Large M =⇒ more flexibility =⇒ more tuning to noise.
I BUT, if we have more data, then over-fitting is reduced.
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I Fitted polynomials of order M = 9 with N = 15 and N = 100
data points. More data reduces the effect of over-fitting.

I Rough heuristic to avoid over-fitting: Number of data points
should be greater than k |w| where k is some multiple like 5 or
10.
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How to avoid over-fitting

I Since large coefficients =⇒ over-fitting, discourage large
coefficents in w.

Ẽ (w) =
1
2

N∑
n=1

{y(xn,w)− tn}2 +
λ

2
||w||2

where ||w||2 = wTw = w2
0 + w2

1 + · · ·+ w2
M and λ controls

the relative importance of the regularizer compared to the
error term.

I Also called regularization, shrinkage, weight-decay.
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For a polynomial of order 9

No over-fitting λ = e−18 Too much smoothing (no fitting) for λ = 1.
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Effect of regularization

I As λ increases, the typical magnitude of coefficients gets
smaller.

I We go from over-fitting (λ = 0) to no over-fitting (λ = e−18)
to poor fitting (λ = 1).

I Since M = 9 is fixed, regularization controls the degree of
over-fitting.
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Graph of root-mean-square (RMS) error of fitting the M = 9
polynomial as λ is increased.
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How to avoid over-fitting

I A more principled approach to control over-fitting is the
Bayesian approach (to be covered later).

I Determines the effective number of parameters automatically.

I We need the machinery of probability to understand the
Bayesian approach.

I Probability theory also offers a more principled approach for
our polynomial fitting example.
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Probability Theory

I Uncertainty is a key concept in pattern recognition.
I Uncertainty arises due to

I Noise on measurements.
I Finite size of data sets.

I Uncertainty can be quantified via probability theory.
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Probability

I P(event) is fraction of times event occurs out of total number
of trials.

I P = limN→∞
#successes

N .

P(B = b) = 0.6,P(B = r) = 0.4 p(apple) = p(F = a) =?
p(blue box given that apple was selected) = p(B = b|F = a) =?
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Terminology

I Joint P(X ,Y )

I Marginal P(X )

I Conditional P(X |Y )
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Elementary rules of probability

Elementary rules of probability
I Sum rule: p(X ) =

∑
Y p(X ,Y )

I Product rule: p(X ,Y ) = p(Y |X )p(X )

These two simple rules form the basis of all the probabilistic
machinery in this course.

Nazar Khan Machine Learning



Introduction Example Probability Theory Bayesian View

I The sum and product rules can be combined to write

p(X ) =
∑
Y

p(X |Y )p(Y )

I A fancy name for this is Theorem of Total Probability.
I Since p(X ,Y ) = p(Y ,X ), we can use the product rule to

write another very simple rule

p(Y |X ) =
p(X |Y )p(Y )

p(X )

I Fancy name is Bayes’ Theorem.
I Plays a central role in machine learning.
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Terminology

I If you don’t know which fruit was selected, and I ask you
which box was selected, what will your answer be?

I The box with greater probability of being selected.
I Blue box because P(B = b) = 0.6.
I This probability is called the prior probability.
I Prior because the data has not been observed yet.
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Terminology

I Which box was chosen given that the selected fruit was
orange?

I The box with greater p(B|F = o) (via Bayes’ theorem).
I Red box
I This is called the posterior probability.
I Posterior because the data has been observed.
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Independence

I If joint p(X ,Y ) factors into p(X )p(Y ), then random variables
X and Y are independent.

I Using the product rule, for independent X and Y ,
p(Y |X ) = p(Y ).

I Intuitively, if Y is independent of X , then knowing X does not
change the chances of Y .

I Example: if fraction of apples and oranges is same in both
boxes, then knowing which box was selected does not change
the chance of selecting an apple.

Nazar Khan Machine Learning



Introduction Example Probability Theory Bayesian View

Probability density

I So far, our set of events was discrete.
I Probability can also be defined for continuous variables via

p(x ∈ (a, b)) =

∫ b

a
p(x)dx

I Probability density p(x) is always non-negative and
integrates to 1.

I Probability that x lies in (−∞, z) is given by the cumulative
distribution function

P(z) =

∫ z

∞
p(x)dx

I P ′(x) = p(x).
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Probability density

I Sum rule: p(x) =
∫
p(x , y)dy .

I Product rule: p(x , y) = p(y |x)p(x)
I Probability density can also be defined for a multivariate

random variable x = (x1, . . . , xD).

p(x) ≥ 0∫
x
p(x)dx =

∫
xD

. . .

∫
x1

p(x1, . . . , xD)dx1 . . . dxD = 1
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Expectation

I Expectation is a weighted average of a function.
I Weights are given by p(x).

E [f ] =
∑
x

p(x)f (x) ←− For discrete x

E [f ] =

∫
x
p(x)f (x)dx ←− For continuous x

I When data is finite, expectation ≈ ordinary average.
Approximation becomes exact as N →∞ (Law of large
numbers).
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Expectation

I Expectation of a function of several variables

Ex [f (x , y)] =
∑
x

p(x)f (x , y) (function of y)

I conditional expectation

Ex [f |y ] =
∑
x

p(x |y)f (x)dx
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Variance

Measures variability of a random variable around its mean.

var [f ] = E
[
(f (x)− E [f (x)])2

]
= E

[
(f (x)2

]
− E

[
f (x2)

]
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Covariance

I For 2 random variables, covariance expresses how much x
and y vary together.

cov [x , y ] = Ex ,y [{x − E [x ]}{y − E [y ]}]
= Ex ,y [xy ]− E [x ]E [y ]

I For independent random variables x and y , cov [x , y ] = 0.
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Covariance

I For multivariate random variables, cov [x, y] is a matrix.
I Expresses how each element of x varies with each element of y.

cov [x, y] = Ex,y

[
{x− E [x]}{y − E [y]}T

]
= Ex,y

[
xyT

]
− E [x]E [y]T

I Covariance of multivariate x with itself can be written as
cov [x] ≡ cov [x, x].

I cov [x] expresses how each element of x varies with every other
element.
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Bayesian View of Probability

I So far we have considered probability as the frequency of
random, repeatable events.

I What if the events are not repeatable?
I Was the moon once a planet?
I Did the dinosaurs become extinct because of a meteor?
I Will the ice on the North Pole melt by the year 2100?

I For non-repeatable, yet uncertain events, we have the
Bayesian view of probability.
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Bayesian View of Probability

p(w|D) = p(D|w)p(w)

p(D)

I Measures the uncertainty in w after observing the data D.
I This uncertainty is measured via conditional p(D|w) and prior

p(w).
I Treated as a function of w, the conditional probability p(D|w)

is also called the likelihood function.
I Expresses how likely the observed data is for a given value of
w.
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