Probability 7

Bayesian Vie

Introduction

Introduction

Machine Learning and Pattern Recognition are different names for essentialy the same thing.

- Pattern Recognition arose out of Engineering.
- Machine Learning arose out of Computer Science.
- Both are concerned with automatic discovery of regularities in data

Nazar Khan

Introduction

Machine Learning

Machine Learning Supervised Classification Regression Unsupervised Clustering Density Estimation Reduction Machine Learning Machine Learning Reinforcement Learning

CS-576 Machine Learning

Nazar Khan

PUCIT

Lectures 1-4 Oct 20,22,27,29 2014

Supervised Learning

- **Classification**: Assign **x** to *discrete* categories.
 - ► Examples: Digit recognition, face recognition, etc..
- **Regression**: Find *continuous* values for x.
 - Examples: Price prediction, profit prediction.

Unsupervised Learning

- Clustering: Discover groups of similar examples.
- Density Estimation: Determine probability distribution of data.
- Dimensionality Reduction: Map data to a lower dimensional space.

Reinforcement Learning

- Find actions that maximise a reward. Examples: chess playing program competing against a copy of itself.
- Active area of ML research.
- ▶ We will not be covering reinforcement learning in this course.

Classical Algorithms vs. Machine Learning

ML Approach:

- Collect a large training set x_1, \ldots, x_N of hand-written digits with known labels t_1, \ldots, t_N .
- ► Learn/tune the parameters of an **adaptive** model.
 - ▶ The model can adapt so as to reproduce correct labels for all the training set images.

Classical Algorithms vs. Machine Learning

- Every sample x is mapped to f(x).
- ▶ ML determines the mapping *f* during the **training phase**. Also called the learning phase.
- \blacktriangleright Trained model f is then used to label a new test image x_{test} as $f(\mathbf{x}_{\text{test}})$.

Nazar Khan	Mach	ine Learning	Nazar Khan	Mach	ine Learning
Introduction	Example		Introduction	Example	Probabilit
Terminology			Essential To	ppics for ML	

- Generalization: ability to correctly label new examples.
 - Very important because training data can only cover a tiny fraction of all possible examples in practical applications.
- > Pre-processing: Transform data into a new space where solving the problem becomes
 - easier. and
 - ▶ faster.
 - Also called **feature extraction**. The extracted features should
 - ▶ be quickly computable, and
 - preserve useful discriminatory information.

- 1. Probability theory deals with uncertainty.
- 2. Decision theory uses probabilistic representation of uncertainty to make optimal predictions.
- **3.** Information theory

Example: Polynomial Curve Fitting

Nazar Khan

Real-world Data

Exampl

Example

Real-world data has 2 important properties

1. underlying regularity,

Problem: Given *N* observations of input x_i with corresponding observations of output t_i , find function f(x) that predicts *t* for a new value of *x*.

Machine Learning

First, let's generate some data.

N=10; x=0:1/(N-1):1; t=sin(2*pi*x); plot(x,t,'o');

Notice that the data is generated through the function $sin(2\pi x)$. Real-world observations are always 'noisy'. Let's add some noise to the data

n=randn(1,N)*0.3; t=t+n; plot(x,t,'o');

Nazar Khan

Machine Learning

Polynomial curve fitting

Example

• We will fit the points (x, t) using a polynomial function

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

where M is the **order** of the polynomial.

- Function $y(x, \mathbf{w})$ is a
 - non-linear function of the input x, but
 - \blacktriangleright a linear function of the parameters w.
- So our model $y(x, \mathbf{w})$ is a **linear model**.

Probability Theory

Bayesian View

in

Polynomial curve fitting

- Fitting corresponds to finding the optimal w. We denote it as w*.
- \blacktriangleright Optimal w^* can be found by minimising an error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

► Can *E*(**w**) ever be negative?

Example

► Can *E*(**w**) ever be zero?

Nazar Khan	Machine I	earning	
	Formula		
	M = 0 M = 0 x 1 M = 3 M = 3 x 1		M = 1

Geometric interpratation of the sum-of-squares error function.

Nazar Khan		Machine Learning			
Over-fitting	Example	Probability Theory			

- ► Lower order polynomials can't capture the variation in data.
- Higher order leads to over-fitting.
 - Fitted polynomial passes *exactly* through each data point.
 - But it oscillates wildly in-between.
 - Gives a very poor representation of the real underlying function.
- Over-fitting is bad because it gives bad generalization.

Over-fitting

- To check generalization performance of a certain w^{*}, compute E(w^{*}) on a *new* test set.
- Alternative performance measure: root-mean-square error (RMS)

Example

$$E_{RMS} = \sqrt{\frac{2E(\mathbf{w}^*)}{N}}$$

- ► Mean ensures datasets of different sizes are treated equally.
- Square-root brings the squared error scale back to the scale of the target variable t.

Example

Root-mean-square error on training and test set for various polynomial orders M.

Nazar Khan

Machine Learning

Example Probability Theory Bayesian View

Paradox

Nazar Khan

 A polynomial of order *M* contains all polynomials of lower order.

Machine Learning

- So higher order should *always* be better than lower order.
- **BUT**, it's not better. Why?
 - Because higher order polynomial starts fitting the noise instead of the underlying function.

Over-fitting

	M = 0	M = 1	M=3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Example

- Typical magnitude of the polynomial coefficients is increasing dramatically as *M* increases.
- ► This is a sign of over-fitting.
- The polynomial is trying to fit the data points exaclty by having larger coefficients.

Nazar Khan

Tree	rect of regularization						
		$\ln\lambda=-\infty$	$\ln\lambda=-18$	$\ln\lambda=0$			
	w_0^\star	0.35	0.35	0.13			
	w_1^{\star}	232.37	4.74	-0.05			
	w_2^{\star}	-5321.83	-0.77	-0.06			
	$w_3^{\tilde{\star}}$	48568.31	-31.97	-0.05			
	w_4^{\star}	-231639.30	-3.89	-0.03			

w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_{0}^{\star}	125201.43	72.68	0.01

Exampl

- As λ increases, the typical magnitude of coefficients gets smaller.
- We go from over-fitting ($\lambda = 0$) to no over-fitting ($\lambda = e^{-18}$) to poor fitting $(\lambda = 1)$.
- Since M = 9 is fixed, regularization controls the degree of over-fitting.

Nazar Khan	Machine Learning

Example

How to avoid over-fitting

- ► A more principled approach to control over-fitting is the Bayesian approach (to be covered later).
 - Determines the *effective* number of parameters automatically.
- We need the machinery of **probability** to understand the Bayesian approach.
- Probability theory also offers a more principled approach for our polynomial fitting example.

Example

Graph of root-mean-square (RMS) error of fitting the M = 9polynomial as λ is increased.

Nazar Khan

Machine Learning

Probability Theory

Probability Theory

- Uncertainty is a key concept in pattern recognition.
- Uncertainty arises due to
 - Noise on measurements.
 - ► Finite size of data sets.
- Uncertainty can be quantified via probability theory.

Bayesian Vi

Probability

- P(event) is fraction of times event occurs out of total number of trials.
- ► $P = \lim_{N \to \infty} \frac{\# \text{successes}}{N}$.

$$P(B = b) = 0.6, P(B = r) = 0.4 p(apple) = p(F = a) =?$$

 $p(blue box given that apple was selected) = p(B = b|F = a) =?$

Terminology

- Joint P(X, Y)
- ► Marginal *P*(*X*)
- ► Conditional P(X|Y)

Nazar	Khan	

Machine Learning

Nazar Khan

Terminology

orange?

Red box

Terminology

▶ The sum and product rules can be combined to write

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

- ► A fancy name for this is **Theorem of Total Probability**.
- Since p(X, Y) = p(Y, X), we can use the product rule to write another very simple rule

Machine Learning

Which box was chosen given that the selected fruit was

► This is called the **posterior probability**.

Posterior because the data has been observed.

• The box with greater p(B|F = o) (via Bayes' theorem).

Probability Theory

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

- ► Fancy name is **Bayes' Theorem**.
- ▶ Plays a *central role* in machine learning.

- If you don't know which fruit was selected, and I ask you which box was selected, what will your answer be?
 - The box with greater probability of being selected.
 - Blue box because P(B = b) = 0.6.
 - This probability is called the prior probability.
 - Prior because the data has not been observed yet.

Nazar Khan	Machine Learning	
	Probability Theory	
Independence		

• If joint p(X, Y) factors into p(X)p(Y), then random variables X and Y are independent.

- Using the product rule, for independent X and Y, p(Y|X) = p(Y).
- Intuitively, if Y is independent of X, then knowing X does not change the chances of Y.
- Example: if fraction of apples and oranges is same in both boxes, then knowing which box was selected does not change the chance of selecting an apple.

Probability density

- ► So far, our set of events was discrete.
- Probability can also be defined for continuous variables via

$$p(x \in (a, b)) = \int_a^b p(x) dx$$

- Probability density p(x) is always non-negative and integrates to 1.
- ▶ Probability that x lies in (-∞, z) is given by the cumulative distribution function

$$P(z) = \int_{\infty}^{z} p(x) dx$$

Probability Theory

 $\blacktriangleright P'(x) = p(x).$

Nazar Khan

Machine Learning

Probability density

- Sum rule: $p(x) = \int p(x, y) dy$.
- Product rule: p(x, y) = p(y|x)p(x)
- Probability density can also be defined for a multivariate random variable x = (x₁,...,x_D).

$$p(\mathbf{x}) \ge 0$$

 $\int_{\mathbf{x}} p(\mathbf{x}) d\mathbf{x} = \int_{x_D} \dots \int_{x_1} p(x_1, \dots, x_D) dx_1 \dots dx_D = 1$

• Weights are given by p(x).

$$\mathbb{E}[f] = \sum_{x} p(x)f(x) \qquad \qquad \longleftarrow \text{ For discrete } x$$
$$\mathbb{E}[f] = \int_{x} p(x)f(x)dx \qquad \qquad \longleftarrow \text{ For continuous } x$$

► When data is finite, expectation ≈ ordinary average. Approximation becomes exact as N → ∞ (Law of large numbers).

Nazar Khan

Covariance

Probability Theory

Expectation

• Expectation of a function of several variables

$$\mathbb{E}_{x}[f(x,y)] = \sum_{x} p(x)f(x,y) \qquad (\text{function of } y)$$

conditional expectation

$$\mathbb{E}_{x}\left[f|y\right] = \sum_{x} p(x|y)f(x)dx$$

Machine Learning

▶ For 2 random variables, covariance expresses how much *x*

• For independent random variables x and y, cov[x, y] = 0.

 $cov[x, y] = \mathbb{E}_{x, y} \left[\{x - \mathbb{E}[x]\} \{y - \mathbb{E}[y]\} \right]$ $=\mathbb{E}_{x,y}[xy]-\mathbb{E}[x]\mathbb{E}[y]$

Probability Theory

Variance

Measures variability of a random variable around its mean.

$$var[f] = \mathbb{E}\left[(f(x) - \mathbb{E}[f(x)])^2\right]$$
$$= \mathbb{E}\left[(f(x)^2] - \mathbb{E}\left[f(x^2)\right]\right]$$

Nazar Khan	Machine Learning	
	Probability Theory	Bayesian View
Covariance		

- For multivariate random variables, $cov [\mathbf{x}, \mathbf{y}]$ is a matrix.
- Expresses how each element of x varies with each element of y.

$$cov[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\{ \mathbf{x} - \mathbb{E} [\mathbf{x}] \} \{ \mathbf{y} - \mathbb{E} [\mathbf{y}] \}^{T} \right]$$
$$= \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\mathbf{x} \mathbf{y}^{T} \right] - \mathbb{E} [\mathbf{x}] \mathbb{E} [\mathbf{y}]^{T}$$

- Covariance of multivariate x with itself can be written as $cov[\mathbf{x}] \equiv cov[\mathbf{x},\mathbf{x}].$
- \triangleright cov [x] expresses how each element of x varies with every other element.

and y vary together.

Bayesian View of Probability

Nazar Khan

- So far we have considered probability as the *frequency of* random, repeatable events.
- ► What if the events are not repeatable?
 - ► Was the moon once a planet?
 - ▶ Did the dinosaurs become extinct because of a meteor?
 - ▶ Will the ice on the North Pole melt by the year 2100?
- For non-repeatable, yet uncertain events, we have the Bayesian view of probability.

Bayesian View

Bayesian View of Probability

$$p(\mathbf{w}|\mathcal{D}) = rac{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D})}$$

- Measures the uncertainty in w <u>after</u> observing the data \mathcal{D} .
- This uncertainty is measured via conditional p(D|w) and prior p(w).
- Treated as a function of w, the conditional probability $p(\mathcal{D}|w)$ is also called the **likelihood function**.
- Expresses how likely the observed data is for a given value of w.

Machine Learning

Nazar Khan

Machine Learning