CS-576 Machine Learning

Nazar Khan

PUCIT

Lectures 5-8 Nov 5,10,12,17 2014

Gaussian Distribution

Model Selection

Curse of Dimensionalit

Gaussian Distribution

ightharpoonup Multivariate form for D- dimensional vector ${\bf x}$ of continuous variables

$$\mathcal{N}(\mathsf{x}|\mu, \mathbf{\Sigma}) = rac{1}{\sqrt{(2\pi)^D |\mathbf{\Sigma}|}} \exp\left\{-rac{1}{2}(\mathsf{x}-\mu)^T \mathbf{\Sigma}^{-1} (\mathsf{x}-\mu)
ight\}$$

where the $D \times D$ matrix Σ is called the **covariance matrix** and $|\Sigma|$ is its determinant.

Gaussian Distribution

Gaussian Distribution

► Known as the queen of distributions.

- ► Also called the **Normal distribution** since it models the distribution of almost all natural phenomenon.
- ► For continuous variables.

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

where μ is the mean, σ^2 is the variance and σ is the standard deviation.

▶ Reciprocal of variance, $\beta = \frac{1}{\sigma^2}$ is called **precision**.

Nazar Khar

Machine Learning

Gaussian Distribution

Model Selection

Curse of Dimensionali

Independent and Identically Distributed

- ▶ Let $\mathcal{D} = (x_1, ..., x_N)$ be a set of N random numbers.
- ▶ If value of any x_i does not affect the value of any other x_j , then the x_i s are said to be **independent**.
- ▶ If each x_i follows the same distribution, then the x_i s are said to be **identically distributed**.
- ▶ Both properties combined are abbreviated as i.i.d.
- Assuming the x_i s are i.i.d under $\mathcal{N}(\mu, \sigma^2)$

$$p(\mathcal{D}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)$$

▶ This is known as the likelihood function for the Gaussian.

azar Khan Machine Learning

Nazar Khan

Gaussian Distribution

Fitting a Gaussian

- Assuming we have i.i.d data $\mathcal{D} = (x_1, \dots, x_N)$, how can we find the parameters of the Gaussian distribution that generated it?
- Find the (μ, σ^2) that maximise the likelihood.
- ► Since logarithm is a monotonically increasing function, maximising the log is equivalent to maximising the function.
- ► Logarithm of the Gaussian
 - ▶ is a simpler function, and
 - ▶ is numerically superior (consider taking product of very small probabilities versus taking the sum of their logarithms).

Machine Learning

Bias of Maximum Likelihood

- Since $\mathbb{E}[\mu_{MI}] = \mu$, ML estimates the mean correctly.
- ▶ But, since $\mathbb{E}\left[\sigma_{MI}^2\right] = \left(\frac{N-1}{N}\right)\sigma^2$, ML underestimates the variance by a factor $\frac{N-1}{N}$.
- ▶ This phenomenon is called bias and lies at the root of over-fitting.

Log Likelihood

Gaussian Distribution

► Log likelihood of Gaussian becomes

$$\ln p(\mathcal{D}|\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

 \blacktriangleright Maximising w.r.t μ , we get

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

 \blacktriangleright Maximising w.r.t σ^2 , we get

$$\sigma_{ML}^{2} = \frac{1}{N} \sum_{n=1}^{N} (x_{n} - \mu_{ML})^{2}$$

Machine Learning

Polynomial Curve Fitting

A Probabilistic Perspective

- Our earlier treatment was via error minimization.
- Now we take a probabilistic perspective.
- ▶ The real goal: make accurate prediction t for new input x given training data (x,t).
- ▶ Prediction implies uncertainty. Therefore, target value can be modelled via a probability distribution.
- \triangleright We assume that given x, the target variable t has a Gaussian distribution.

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(t - y(x, \mathbf{w}))^2\right\}$$
(1)

Machine Learning

Gaussian Distribution Model Selection Co

Polynomial Curve Fitting A Probabilistic Perspective

► Knowns: Training set (x, t).

▶ Unknowns: Parameters \mathbf{w} and β .

Assuming training data is i.i.d likelihood function becomes

$$p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n,\mathbf{w}),\beta^{-1})$$

► Log of likelihood becomes

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

Maximization of likelihood w.r.t w is equivalent to minimization of $\frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$.

Nazar Khan

Machine Learning

Gaussian Distribution

Model Selection

Curse of Dimensionalit

Polynomial Curve Fitting A Probabilistic Perspective

• \mathbf{w}_{ML} and β_{ML} yields a probability distribution over the prediction t.

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}_{ML}, \beta_{ML}) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n, \mathbf{w}_{ML}), \beta_{ML}^{-1})$$

▶ The polynomial function $y(x, \mathbf{w}_{ML})$ alone only gives a point estimate of t.

Gaussian Distribution Model Se

Polynomial Curve Fitting A Probabilistic Perspective

- ▶ **So**, assuming $t \sim \mathcal{N}$, ML estimation leads to sum-of-squared errors minimisation.
- **Equivalently**, minimising sum-of-squared errors implies $t \sim \mathcal{N}$ (*i.e.*, noise was normally distributed).

Nazar Khai

Machine Learning

Gaussian Distributio

Model Selection

Curse of Dimensional

Polynomial Curve Fitting Bayesian Perspective

▶ ML estimation of w maximises the likelihood function $p(\mathbf{t}|\mathbf{x}, \mathbf{w})$

- to find the w for which the observed data is most likely.
- ▶ By using a prior $p(\mathbf{w})$, we can employ Bayes' theorem

$$\underbrace{p(\mathbf{w}|\mathbf{x},\mathbf{t})}_{ ext{posterior}} \propto \underbrace{p(\mathbf{t}|\mathbf{x},\mathbf{w})}_{ ext{likelihood}} \underbrace{p(\mathbf{w})}_{ ext{prior}}$$

- Now maximise the posterior probability $p(\mathbf{w}|\mathbf{x}, \mathbf{t})$ to find the most probable \mathbf{w} given the data (\mathbf{x}, \mathbf{t}) .
- ▶ This technique is called maximum posterior or MAP.

Nazar Khan Machine Learning

Nazar Khan

Polynomial Curve Fitting Bayesian Perspective

▶ Let the prior on parameters w be a zero-mean Gaussian

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2}\right)^{(M+1)/2} \exp\{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}\}$$

▶ Negative logarithm of posterior becomes

$$\ln p(\mathbf{w}|\mathbf{x},\mathbf{t},\alpha,\beta) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n,\mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w}$$

which is the same as the regularized sum-of-squres error function with $\lambda = \alpha/\beta$.

Machine Learning

Model Selection

Model Selection

- ▶ In our polynomial fitting example, M = 3 gave the best generalization by controlling the number of free parameters.
- ightharpoonup Regularization coefficient λ also achieves a similar effect.
- \triangleright Parameters such as λ are called hyperparameters.
- ▶ They determine the model (model's complexity).
- ▶ Model selection involves finding the best values for parameters such as M and λ .

Polynomial Curve Fitting Bayesian Perspective

Gaussian Distribution

▶ So, assuming $t \sim \mathcal{N}$ and $\mathbf{w} \sim \mathcal{N}$, MAP estimation leads to regularized sum-of-squared errors minimisation.

- **Equivalently**, minimising regularized sum-of-squared errors implies $t \sim \mathcal{N}$ and $\mathbf{w} \sim \mathcal{N}$ (i.e., noise and the parameters were normally distributed).
- If precision on noise and parameters were α and β respectively, then regularizer $\lambda = \alpha/\beta$.
- \blacktriangleright MAP estimation allows us to determine optimal α and β whereas ML estimation depends on a user-given λ .

Model Selection

Model Selection

- ▶ One approach is to check generalization on a separate validation set.
- ► Select model that performs best on validation set.
- ▶ One standard technique is called **cross-validation**.
 - ▶ Use $\frac{S-1}{S}$ of the available data for training and the rest for
 - \triangleright Disadvantage: S times more training for 1 parameter. S^k times more training for k parameters.

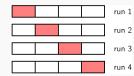


Figure: S-fold cross validation for S=4. Every training is evaluated on the validation set (in red) and these validation set perfromance are averaged over the S training runs.

Model Selection

- ► Ideally
 - use only training data,
 - perform only 1 training run for multiple hyperparameters,
 - performance measure that avoids bias due to over-fitting.

Machine Learning

Curse of Dimensionality

Curse of Dimensionality

- ▶ Our polynomial curve fitting example was for a single variable
- ▶ When number of variables increases, the number of parameters increases exponentially.

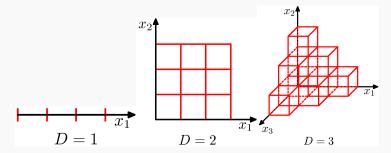


Figure: Curse of Dimensionality: The number of regions of a regular grid grows exponentially with with the dimensionality D of the search space.

Machine Learning

Choose model for which

$$\ln p(\mathcal{D}|\mathbf{w}_{ML}) - M$$

Model Selection

is maximized.

- ▶ This is called Akaike Information Criterion (AIC).
- ▶ The best method is the Bayesian approach which penalises model complexity in a natural, principled way.

Machine Learning

Curse of Dimensionalit

Calculus of Variations Calculus of Real Numbers

- \triangleright Considers real-valued functions f(x): mappings from a real number x to another real number.
- ▶ If f has a minimum in ξ , then ξ necessarily satisfies $f'(\xi) = 0$.
- ▶ If f is strictly convex, then ξ is the unique minimum.

Curse of Dimensionality

Calculus of Variations Calculus of Variations

- \triangleright Considers real-valued functionals E(u): mappings from a function u(x) to a real number
- \triangleright If E is minimised by a function v, then v necessarily satisfies the corresponding Euler-Lagrange equation, a differential equation in v.
- ▶ If *E* is strictly convex, then *v* is the unique minimiser.

Machine Learning

Curse of Dimensionality

Calculus of Variations

Euler-Lagrange Equation in 2-D

$$E(u) = \int_{\Omega} F(x, y, u, u_x, u_y) dxdy$$

yields the Euler-Lagrange equation

$$F_{u} - \frac{d}{dx}F_{u_{x}} - \frac{d}{dy}F_{u_{y}} = 0$$

with the natural boundary condition

$$\mathbf{n}^T \left(\begin{array}{c} F_{u_x} \\ F_{u_y} \end{array} \right) = 0$$

on the rectangular boundary $\partial \Omega$ with normal vector **n**. Extensions to higher dimensions are analogous.

Calculus of Variations Euler-Lagrange Equation in 1-D

A smooth function $u(x), x \in [a, b]$ that minimises the functional

$$E(u) = \int_a^b F(x, u, u') dx$$

necessarily satisfies the Euler-Lagrange equation

$$F_u - \frac{d}{dx}F_{u'} = 0$$

with so-called natural boundary conditions

$$F_{''} = 0$$

in x = a and x = b.

Machine Learning

Curse of Dimensionalit

Curse of Dimensionality

Calculus of Variations

Euler-Lagrange Equations for Vector-Valued Functions

$$E(u,v) = \int_a^b F(x,u,v,u',v') dx$$

creates a set of Euler-Lagrange equations:

$$F_u - \frac{d}{dx}F_{u'} = 0$$

$$F_{v} - \frac{d}{dx}F_{v'} = 0$$

with natural boundary conditions for u and v.

Extensions to vector-valued functions with more components are straightforward.

Machine Learning

Lagrange Multipliers

- ▶ Sometimes we need to optimise a function with respect to some constraints.
 - ▶ Minimise f(x) subject to x > 0.
 - ▶ Maximise f(x) subject to g(x) = 0.
- ▶ The method of Lagrange Multipliers is an elegant way of optimising functions subject to some constraints.
- ▶ The optimiser x for which $\nabla f(x) = 0$ is called the **stationary point** of f.
- ▶ Method of Lagrange multipliers finds the stationary points of a function subject to one or more constraints.

Nazar Khan

Machine Learning

Curse of Dimensionality

Lagrange Multipliers

 \triangleright So, at any maximiser x^*

$$\nabla f(x) = \lambda \nabla g(x)$$

▶ This can be formulated as maximisation of the so-called Lagrangian function

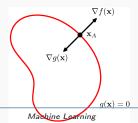
Machine Learning

$$L(x,\lambda) = f(x) + \lambda g(x)$$

with respect to x and λ .

Lagrange Multipliers

- For a D dimensional vector $\mathbf{x}, g(\mathbf{x}) = 0$ is a D 1 dimensional surface in x-space.
- For any surface g(x) = 0, the gradient $\nabla g(x) = 0$ is orthogonal to the surface.
- At any maximiser x^* of f(x) that also satisfies g(x) = 0, $\nabla f(x)$ must also be orthogonal to the surface g(x) = 0.
 - If $\nabla f(x)$ is orthogonal to g(x) = 0 at x^* , then any movement around x^* along surface g(x) = 0 is orthogonal to $\nabla f(x)$ and will not increase the value of f.
 - \blacktriangleright The only way to increase value of f at x^* is to leave the constraint surface g(x) = 0.



Lagrange Multipliers

At maximiser x^*

$$0 \equiv \nabla L = \nabla f(x) + \lambda \nabla g(x) \tag{2}$$

which gives D+1 equations that the optimal x^* and λ^* must satisfy

$$\frac{\partial L}{\partial x_1} = 0 \tag{3}$$

$$\frac{\partial L}{\partial x_2} = 0 \tag{4}$$

$$\frac{\partial L}{\partial x_D} = 0 \tag{6}$$

$$\frac{\partial L}{\partial \lambda} = 0 \tag{7}$$

If only x^* is required then λ can be eliminated without determining its value (hence λ is also called an undetermined multiplier.)

Gaussian Distribution

Model Selection

Curse of Dimensionality

Lagrange Multipliers Example

Maximise $1 - x_1^2 - x_2^2$ subject to the constraint $x_1 + x_2 = 1$.

Nazar Khan