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Probability Distributions

Why study distributions?

I So that we can model unknown p(x) given data {x}
corresponding to observations of random variable x.

I Also called density estimation.
I Fundamentally ill-posed problem because infinitely many

distributions can give rise to the obeserved data.
I Any distribution that is non-zero at the observed data points

could have generated the data.

I Chosing an appropriate distribution relates to model selection.
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Probability Distributions

Parametric density estimation

I A parametric distribution p(x|θ) is one where parameters θ
determine the exact probability function. For example,
Gaussian N (µ, σ2).

I Density estimation =⇒ finding θ∗ given observed data.
I Frequentist approach: Maximise likelihood p(data|θ).
I Bayesian approach: Use prior p(θ) to obtain posterior

p(θ|data) via Bayes’ theorem and maximise it.
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Probability Distributions

Non-parametric density estimation

I One weakness of parametric methods is that the functional
form of the density is fixed and can be inappropriate for a
particular application.

I For example, assuming Gaussian when the observed data is not
normally distributed at all (multi-modal).

I We will consider 3 non-parametric methods
I Histograms
I Nearest-neighbours
I Kernels
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Probability Distributions

Binary Random Variables – Bernoulli Distribution

I Can take only 2 states. That is x ∈ {0, 1}.
I p(x = 1) = µ and p(x = 0) = 1− µ where parameter µ can

be interpreted as the probability of success.
I Note that we can write p(x) = µx(1− µ)1−x . This is also

called the Bernoulli distribution

Bern(x |µ) = µx(1− µ)1−x

Verify that this probability distribution
I is normalised,
I E[x ] = µ, and
I var[x ] = µ(1− µ)
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Probability Distributions

Bernoulli Distribution

I Likelihood for i.i.d Bernoulli data D is
p(D|µ) =

∏N
n=1 µ

xn(1− µ)1−xn .
I Log-likelihood is

ln p(D|µ) =
N∑

n=1

xn lnµ+ (1− xn) ln(1− µ)

= lnµ
∑

xn − ln(1− µ)
∑

xn + N ln(1− µ)

I Note that log-likelihood depends on data only through the sum∑
xn. So

∑
xn is a sufficient statistic for the the data under

this distribution.
I Knowing the sum is sufficient for computing the log-likelihood.

The individual data points are not required.
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Probability Distributions

Bernoulli Distribution

I Setting the derivative of the log-likelihood w.r.t µ to zero, we
see that µML = 1

N

∑
xn = m

N where m is the number of
successes (x=1) in the observed data.

I So µML is the fraction of successes (x=1) in the observed data.
I Biased towards the observed sample (over-fitting). Solution:

Use prior on µ (Bayesian approach).
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Probability Distributions

Binomial Distribution

I A binomial random variable x measures the number of
successes in N trials.

Bin(m|N, µ) =

(
N
m

)
µm(1− µ)(N−m)

where
(
N
m

)
= N!

(N−m)!m! is the number of ways of choosing m

items from a total of N items. Explain why.
I E[m] = Nµ. Prove it.
I var[m] = Nµ(1− µ). Prove it.
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Probability Distributions

Sequential Learning

I Since posterior ∝ likelihood × prior, if prior has the same
functional form as the likelihood, the posterior will also have
the same functional form.

I Gaussian likelihood × Gaussian prior leads to Gaussian
posterior.

I Now this posterior p(model|data) can be used as a prior
p(model) for subsequent data.

I This is called sequential learning.
I Such a prior is called a conjugate prior.
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Probability Distributions

Sequential Learning
Beta Distribution

I Functional form of likelihood for i.i.d Binomial data is
µx(1− µ)1−x .

I A prior of the same functional form is given by the so-called
Beta distribution

Beta(µ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
µa−1(1− µ)b−1

where Γ(x) =
∫ x
0 ux−1e−udu is called the gamma function.

I a and b are hyperparameters since the control the distribution
of parameter µ.

I Verify that the beta distribution is
I is normalised

∫ 1
0 Beta(µ|a, b)dµ = 1,

I E[µ] = a
a+b , and

I var[µ] = ab
(a+b)2(a+b+1) .
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Probability Distributions

Sequential Learning
Putting it all together

I Likelihood for i.i.d Binomial data is

Bin(m|N, µ) =

(
N
m

)
µm(1− µ)(N−m)

I Conjugate prior is given by the beta distribution

Beta(µ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
µa−1(1− µ)b−1

I After multiplying likelihood and prior, the posterior can be
written in the form

p(µ|m,N −m︸ ︷︷ ︸
l

, a, b) ∝ µm+a−1(1− µ)l+b−1

which is again a beta distribution.
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Probability Distributions

Sequential Learning
Putting it all together

I So we can find the normalizing coefficent too and the posterior
becomes

p(µ|m, l , a, b) =
Γ(m + a + l + b)

Γ(m + a)Γ(l + b)
µm+a−1(1− µ)l+b−1

I Compared to prior, posterior increases a by m and b by l .
I So hyperparameters a and b can be interpreted as effective

successes and failures.
I For subsequent data, we can treat posterior as prior and keep

updating it.
I Multiply current posterior︸ ︷︷ ︸

prior

by the likelihood of the new

observation. For beta distribution, increment a by 1 for x = 1
and b by 1 for x = 0.

I Normalize.
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Probability Distributions

Sequential Learning

I Sequential learning is useful for
I online (real-time) learning because observations can be used in

small batches (or one at a time).
I large data sets because observations can be discarded after

using.
I Sequential learning requires

1. i.i.d data so that likelihood for new observation can be
multiplied by the old likelihood.

2. conjugate prior so that posterior does not change form and can
be continuously updated.
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Probability Distributions

Multinomial Random Variables

I Random variables that can take 1-of-K values.

x = (0, 0, 1, 0, 0, 0)T

represents an observation of x in which x3 = 1.
I Note that

∑K
k=1 xk = 1.

I If p(xk = 1) = µk , then µk ≥ 0,
∑K

k=1 µk = 1 and
p(x|µ) =

∏K
k=1 µ

xk
k .

I A generalization of the binomial distribution is the
multinomial distribution

Mult(m1,m2, . . . ,mK |µ,N) =

(
N

m1m2 . . .mK

) K∏
k=1

µmk
k

where mk is the number of data points having the kth value.
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Probability Distributions

Multinomial Random Variables
Sequential Learning

I The corresponding conjugate prior is given by the Dirichlet
distribution

Dir(µ|α) =
Γ(
∑K

k=1 αk)

Γ(α1)Γ(α2) . . . Γ(αK )

K∏
k=1

µαk−1
k

I Multiplying the multinomial likelihood with the Dirichlet
conjugate prior gives a Dirichlet posterior Dir(µ|α + m).

I This allows sequential learning for multinomial random
variables.
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