SE 461 Computer Vision

Nazar Khan PUCIT Lecture 13 and 14

Note

- 1. Missing assignments/quizes are unacceptable.
 - Please contact me if you have not submitted any assignment or quiz.
- 2. Follow submission instructions carefully.
- 3. You will learn **only by implementing**.
 - Explore/verify/reject the ideas covered in class by writing small Matlab codes.
 - The lectures cover the basic ideas implementation details are sometimes as important as the idea.
 - Some students are doing this. So don't rationalise your laziness!

Hough Transform for Line Detection

- A powerful method for detecting curves from boundary information.
- Exploits the duality between <u>points on a curve</u> and <u>parameters of the curve</u>.
- Can detect analytic as well as non-analytic curves.

Analytic Representation of a Line

Analytic Representation

– Line: y=mx+c

- Every choice of parameters (*m,c*) represents a different line.
- This is known as the <u>slope-</u> intercept parameter space.
- Weakness: vertical lines have m=infinity.

Polar Representation

y=mx+c

- Solution: Polar representation (r, ϕ) where
 - -r = distance of line from origin
 - $-\phi$ = angle of vector orthogonal to the line
- Every (r, φ) pair represents a
 2D line.

Polar Representation

v=mx+c

• Cartesian to Polar

y = mx + c $y = -\frac{\cos(\theta)}{\sin(\theta)}x + \frac{r}{\sin(\theta)}$ $r = x\cos(\theta) + y\sin(\theta)$

Key insight: If a line through a known point (x, y) has angle φ, how can we find r?

Generating all possible lines through a point (x,y)

x=10; y=10; theta=0:pi/32:pi; r=x*cos(theta)+y*sin(theta); plot(theta,r);

In the space (r, ϕ) of polar parameters, the light blue curve represents **all lines** that can pass through the point (10,10).

We can generate lines through (x,y) by varying φ and computing the corresponding r-value.

Generating all possible lines through a point (x,y)

x=10; y=10; theta=0:pi/32:pi; r=x*cos(theta)+y*sin(theta); plot(theta,r);

In the space (r, φ) of polar parameters, the light blue curve represents **all lines** that can pass through the point (10,10).

We can generate lines through (x,y) by varying φ and computing the corresponding r-value.

Hough Transform for Line Detection

- All lines going through a point (x,y) can be generated by iterating over $\phi = [0, \pi]$ and computing the corresponding $r(\phi)$.
 - That is, all lines going through a point (x,y) satisfy $r(\phi) = x.\cos(\phi)+y.\sin(\phi)$.
- So given any edge point (x, y), iterate over $\phi = [0, \pi]$ and generate the pair $(r(\phi), \phi)$.
 - The point (x, y) votes for all lines $(r(\phi), \phi)$ that pass through it.
- Valid lines can be detected by thresholding the votes .

Hough Transform for Line Detection

Initialise (vote) accumulator array A to all zeros.

For every edge point (*x*, *y*)

For $\phi = 0$ to π

Compute $r=x.cos(\phi)+y.sin(\phi)$

Increment $A(r, \phi)$ by 1 <--- vote of point (x, y) for line (r, ϕ)

EndFor

EndFor

Valid lines are where A > threshold

Hough Transform

- **Improvement 1**: After edge detection, we already know the gradient direction at (*x*, *y*).
 - So there is no need to iterate over all possible ϕ =[0, π]. Use the correct ϕ from the gradient direction.
- **Improvement 2**: Smooth the accumulator array *A* to account for uncertainties in the gradient direction.

Hough Transform for Circle Detection

- Analytic representation of circle of radius r centered at (a,b) is (x-a)^2+(y-b)^2-r^2=0
- Hough space has 3 parameters (a,b,r)

For every boundary point (x,y) For every (a,b) in image plane ← Compute r(a,b) Increment A(a,b,r) by 1 A>threshold represents valid circles.

What if we know the gradient direction at (x,y)?

Hough Transform for Circle Detection

- If we know the gradient direction g(x,y) at point (x,y), then we also know that the center (a,b) can only lie along this line
- Hough space still has 3 parameters (a,b,r) but we search for r over a 1D space instead of a 2D plane.

For every boundary point (x,y) For every (a,b) along gradient direction g(x,y) Compute r Increment A(a,b,r) by 1 A>threshold represents valid circles.

Hough Transform

- Any analytic curve (represented in the form f(x)=0) can be detected using the Hough transform.
 - LINE: $r = x\cos\theta + y\sin\theta$
 - CIRCLE: $x_0 = x r\cos\theta$ where θ is gradient direction $y_0 = y - r\sin\theta$
 - ELLIPSE:

- GENERAL:

- $x_0 = x a\cos\theta$ where θ is gradient direction $y_0 = y - b\sin\theta$
- f(**x, params**) = 0

Hough Transform

- Hough space param₁ x param₂ x ... x param_N becomes very large when number of parameters N is increased.
- Using orientation information g(x,y) in addition to positional information (x,y) leads to a smaller search space.

Generalized Hough Transform

- When shape is non-analytic.
 - Can't be represented as f(x,params)=0

Fig. 6. Geometry for generalized Hough transform.

Generalized Hough Transform

- Training
 - A representation of shape of interest is built in the form of an R-Table
- Stection
 Stores 16 to 24 can be ignored
 Using R-Table, a given shape is matched to the shape of interest

GHT - Training

• Given the shape of interest

Slides 16 to 24 can be ignored

• Find Centroid (x_c, y_c) of shape

- Centroid (x_c, y_c) = average of all boundary points

GHT - Training

GHT - Training

• R-Table is indexed by $\boldsymbol{\varphi}$

Example - Training

Detection

Go to each (x,y) in image

Find φ

- For corresponding entry in R Table
- Fir**Sides** sho to 24 scan be ignored xc = x + x'

yc = y + y'

Increment centroid accumulator by 1

Novel Applications

- The concept of voting is a powerful idea that can be applied for other tasks.
- Example: Action Recognition
 - Yao, Angela, Juergen Gall, and Luc Van Gool. "<u>A hough</u> transform-based voting framework for action
 - Shoesigh 5Cion 24 Vision Dettignored Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010.
 - "learn the mapping between a 3D video patch and its vote in a 4D Hough space to obtain the <u>class label</u> and the <u>spatiotemporal location</u> of an action in the sense of a generalized Hough transform"