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Transtormations

» 2D-to-2D (image-to-image)
» 3D-to-3D (world-to-world)
» 3D-to-2D (camera model)
» 2D-to-3D (shape from X)
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ve from Shading

e from Texture

Structure from Motion
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Points

Ya
y
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zZ  (1,52)or
(10, 50, 20, 10)7
(5,6)7 or

(10, 12, 2)7
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2-D Transformations

Scaling

Original Translation
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2D Transformations

» Basic operation of all 2D transformations is simple

Point to be transformed: [x,y ]

Point after transformation: [x’,y’ ]
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2D Transformations
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In general, scaling transformation is given by

s 0
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2D Transformations

(0,0) (0,1)

(1,1)

(1,0 (1,1)

Original

Transformed
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Shear 1n x-direction

o LA

» X-coordinate moves with an amount proportional to
the y-coordinate

Shear 1n y-direction

1 O x X
e 1]y ex+y

» y-coordinate moves with an amount proportional to
the x-coordinate
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2D Transformations

-1 0 1 0
0 1 0 -1
0"

=9
_O _1_

Reflection is negative scaling
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Rotation

y; = Rsin u{

X, = Rcos(€ + @)
v, = Rsin(6+ @)

X, =Rcos@cos@—Rsinésin @
y, =Rsiné@cos @+ Rcosfsin @

X, =X, 0860~y sinf
vy, =Xx,8In@+ y, cosb

¢ [xz} {cos 6 —sin 9}[;{1}
] X L] : s al L]
' Y, sin@  cosé |y,
N J
v

X, =Rcosg
R

R is rotation by 6 counterclockwise about origin
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Rotation

» Rotation Matrix has some special properties
Each row/column has norm of | [prove]

Each row/column is orthogonal to the other [prove]
So Rotation matrix is an orthonormal matrix
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2D Translation

= Point in 2D given by (x, y,)
= Translated by (d, d)
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Translation

» In matrix form

x, | [1 0 d |x

-}}2 = O I d_r -}11

] O 0 1|1
SRR

T

» We could not have written T multiplicatively without
using homogeneous coordinates
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Basic 2D Transformations

cos@® —sinf O] s. 0 0

siné cos@é 0 0 s 0

0 0L 0 0 1
1 0 d._ 1 e O 1 0 0
0 I d, 0O 1 O e, 1 0
00 1 00 1] |0 0 1
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Inverse Transforms

_ _ 1

s. 0 0 — 00

0 s, 0 s'=|0 L o
S‘-.

0 0 1 ;

SSi=1

nat is Inverse of Rotation?

nat is inverse of Translation?

nat is inverse of Shear in X-direction?
nat is inverse of Shear in Y-direction?




Rotation about an Arbitrary Point

4 =




Concatenation or Composition of
Transformations

= Ve can concatenate a large number of
transformations into a single transformation

= P, = T4 S Re Py
= Rules of matrix multiplication apply

= If we do not use homogeneous coordinates, what
might be the problem here!?
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Order of Transformations

) —>
Scaled Rotated
v A4

Original

—>

¥ L J
Original Rotated Scaled
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Order of Transformations

i
Scaled Rotated

Original

Rotated
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Order of Transformations

» Rotation/Scaling/Shear, followed
1 0 b

0 1

0 0

b,

1

a, d,
a, da,
0 0

by Translation
0] |a a, b |
Ol=lay, a, Db,
1y {0 0 1

» Translation, followed by Rotation/Scaling/Shear
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Affine Transformation

= Encodes rotation, scaling, translation and shear
X, =ax,+a,y, +b,
Y2 =asX, +a,y, +b,

= 6 parameters
= Linear transformation

= Parallel lines are preserved [proof ?]
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Recovering Best Affine Transformation

» Input: we are given some correspondences

» Output: Compute a, — ag which relate the images

» This is an optimization problem... Find the ‘best’ set of
parameters, given the input data
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Parameter Optimization:
Least Squared Error Solutions

» Let us first consider the ‘simpler’ problem of fitting a line
to a set of data points... »
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» Equation of best fit line ?
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Line Fitting: Least Squared Error
Solution

» Step |:ldentify the model
Equation of line:y = mx + ¢
» Step 2:Set up an error term which will give the goodness

S ickespenintiorsss) eagivieriarE rec

Error induced by i* point:
e =mx; tc-y,
Error for whole data: E =X e?
E=X (mx +c—y)?
» Step 3: Differentiate Error w.r.t. parameters, put equal to
zero and solve for minimum point
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Line Fitting: Least Squared Error
Solution

E= me+c ‘s)

X y
1.3 5.7
2.4 7.3
34 10.5

11.8
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380.63 56.1|| m| | 914.68
56.1 10/l ¢| ~ | 1404
Solution: m = 1.9274 c¢c= 3.227
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Line Fitting: Least Squared Error
Solution

Slides 24 to 29 can be ignored




Least Squares Error Solution

noox 2 * 2
E(alaazaa},aadraajaaﬁ): Zl(-xj_xj) +(yj_y})
j:
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Least Squares Error Solution

E(a) 22((a1xj +a,y,; +a; —,Jr:i,.)2 +(a,x; +asy; +ag —y})z)

J=l1
» Minimize E w.rt.a

can e
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Recovering Best Affine Transformation

» Given three pairs of corresponding points, we get 6
equations

xoy, 1L 0 0 0 |aq X'
0O 0 0 x, y 1 ||a v,
x, vy, 1 0 0 0fa, X,
0 0 0 x, v, 1]a,| |y
x; v IO 0 Of}as X,
00 0 x3 vy 1 ag| |y5]
Ax=B x=A"1B
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Pseudo inverse

For an over-constrained linear system
Ax=B

A has more rows than columns

Multiply by AT on both sides

ATAx =A'B

ATA is a square matrix of as many rows as X

We can take its inverse
x = (ATA)'A™B

Pseudo-inverse gives the least squares error
solution! [Proof?]
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Recovering Best Affine Transformation

= In general, we may be given n correspondences

Concatenate n correspondences in A and B

Ais2nx 6
Bis 2n x |

Solve using Least Squares
x = (ATA)'ATB

Courtesy: Sohaib Khan



2D Displacement Models

_ X'=x+b,
» Translation: |
y'=y+ b2
.. X'=xcos@—ysmmb+b

» Rigid: | * ‘

y'=xsin@+ ycos@+0b,

_ X'=ax+a,y+Db,

» Affine:

v=a,x+a,y+b,

a,x+a,y+b,

'

» Projective:  x

cx+c,y+l1

e a,x+a,y+b,

cx+c,y+1
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& 2D Affine Warping

Courtesy: Sohaib Khan



i Warping

= Inputs:

= Image X

= Affine Transformation A =[a, &, b, & a, b,]7
= Output:

= Generate X' such that X' = AX

= Obvious Process:

= For each pixel in X
= Apply transformation

= At that location in X', put the same color as at the original
location in X

= Problems?
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i Warping

= [his will leave holes...

= Because every pixel does not map to an integer
location!

= Reverse Transformation

= For each integer location in X’
= Apply inverse mapping
Problem?

= Will not result in answers at integer locations,
in general

= Bilinearly interpolate from 4 neighbors

Courtesy: Sohaib Khan



* 2D Bilinear Interpolation

= Four nearest points = (M)
of x,y .

(LX):L J’l(x J’) (_ ;) X(x,y)

where X = 1Int(x)




* Bilinear Interpolation




2-D Projective Transform

Also called 2-D Homography or
Colineation.

8 degrees of freedom because
k*H represents the same
homography as H.

Invariants? Lines map to lines, but
parallel lines can become non-
parallel.

Linear Transform?

* In projective space, yes it’s linear.

e Butitrepresents a non-linear
operation in R2.

H =




Estimation of Homography: DLT

Direct Linear Transform (4.1 MVG Hartly & Zisserman)

Projectively Equivalent

r — &
x-.r', == HX, (Different scale, same direction)

/ H = 0 Cross product of vectors in same
X; X nx; = direction is zero

If the j-th row of the matrix H is denoted by h’ T, then we may write



Estimation of Homography: DLT

Direct Linear Transform (4.1 MVG Hartly & Zisserman)

If the j-th row of the matrix H is denoted by h’ T, then we may write

hl TK,-
HX; = hETX,‘ .
h:”}cf

— —

0 —as a»

d — (H]. (lo. (19

—{9 (1 “

- =

axb=[alib= (aT[b]_H)T.



Estimation of Homography: DLT

Direct Linear Transform (4.1 MVG Hartly & Zisserman)
If the j-th row of the matrix H is denoted by h’ T, then we may write

hl TK,-
HX; = hETX,‘
h:iTXi

Writing x! = (2%, ¢, w!)T, the cross product may then be given explicitly as

. 2
P, — T,
X: X Hx.l; — 'u,l;h]-rxf. . ...-I:-:h.'i_rxi
ik Loiks 1t ML T
‘I"ih Xi— ij,l‘l Xi



Estimation of Homography: DLT

Direct Linear Transform (4.1 MVG Hartly & Zisserman)
Writing x! = (2%, 3., w!)T, the cross product may then be given explicitly as

yh3Tx; — wh?Tx,
}C; ¥ HX; = 'ILT;h] TX;‘ = IL'J;hSTK,

il L T R

r:h'x; — y:h*'x;

Dot product of two vectors a and b can be written as
a'b or b'a.




Estimation of Homography: DLT

Direct Linear Transform (4.1 MVG Hartly & Zisserman)

.3“’_ row DT —'u._."’.](_T nyT T hl
is linear T il' L ’ / . T 9
combina wix, 0 — T X, h = 0.
tion of ' T
first two | —y:xT ;I.-': X;r OT J hﬂ
Aih =)
hl
T __anfg ¥ ban k
0 w; X,  Y;X, h | — o
wix! 0" —zix]



Estimation of Homography: DLT

Direct Linear Transform (4.1 MVG Hartly & Zisserman)

A‘;h =

h'
e - R I e
wix; 0' —TiX; s |
h

How many correspondences?

A is rank deficient!

Null Space of A

Invertibilty of H?

Over determined system in the existence of noisy markings?



Projective Warping

e Same as affine.

e But now you MUST convert back to non-homogenous
coordinates after applying the transformation.
e Because 3" component will not necessarily be 1.
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