SE 461 Computer Vision

Nazar Khan

PUCIT

Lectures 15, 16 and 17

Transformations

- 2D-to-2D (image-to-image)
- 3D-to-3D (world-to-world)
- 3D-to-2D (camera model)
- 2D-to-3D (shape from X)
 - Shape from Stereo
 - Shape from Shading
 - Shape from Texture
 - Structure from Motion

Points

2-D Transformations

2D Transformations

Basic operation of all 2D transformations is simple

Point to be transformed: [x, y]

Point after transformation: [x', y']

$$\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a_1x & a_2y \\ a_3x & a_4y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Transformation Matrix
$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\downarrow \qquad \uparrow \qquad \uparrow \qquad \downarrow$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \downarrow$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \downarrow$$

Courtesy: Sohaib Khan

Example

$$\begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} a \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5a \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} a \\ a \end{bmatrix} = \begin{bmatrix} 0.5a \\ 0.5a \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 0.5a \\ 0.5a \end{bmatrix} = \begin{bmatrix} 0.25a \\ 0.25a \end{bmatrix}$$

2D Transformations

$$\begin{bmatrix} 1.5 & 0 \\ 0 & 0.5 \end{bmatrix} = ?$$

In general, scaling transformation is given by

$$\begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

2D Transformations

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = ?$$

Courtesy: Sohaib Khan

Shear in x-direction

$$\begin{bmatrix} 1 & e \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + ey \\ y \end{bmatrix}$$

x-coordinate moves with an amount proportional to the y-coordinate

Shear in y-direction

$$\begin{bmatrix} 1 & 0 \\ e & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ ex + y \end{bmatrix}$$

y-coordinate moves with an amount proportional to the x-coordinate

2D Transformations

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = ?$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = ?$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = ?$$

Reflection is negative scaling

Rotation

$$x_2 = R\cos(\theta + \varphi)$$
$$y_2 = R\sin(\theta + \varphi)$$

 $x_2 = R\cos\theta\cos\varphi - R\sin\theta\sin\varphi$ $y_2 = R\sin\theta\cos\varphi + R\cos\theta\sin\varphi$

$$x_2 = x_1 \cos \theta - y_1 \sin \theta$$

$$y_2 = x_1 \sin \theta + y_1 \cos \theta$$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

R is rotation by θ counterclockwise about origin

Rotation

- Rotation Matrix has some special properties
 - Each row/column has norm of I [prove]
 - Each row/column is orthogonal to the other [prove]
 - So Rotation matrix is an orthonormal matrix

Courtesy: Sohaib Khan

2D Translation

- Point in 2D given by (x_i, y_i)
- Translated by $(d_x d_y)$

$$x_2 = x_1 + d_x$$
$$y_2 = y_1 + d_y$$

Translation

In matrix form

$$\begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

We could not have written T multiplicatively without using homogeneous coordinates

Basic 2D Transformations

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & e_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ e_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & e_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ e_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Inverse Transforms

$$\mathbf{S} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{S}^{-1} = \begin{bmatrix} \frac{1}{s_x} & 0 & 0 \\ 0 & \frac{1}{s_y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$SS^{-1}=I$$

What is Inverse of Rotation? What is inverse of Translation? What is inverse of Shear in X-direction? What is inverse of Shear in Y-direction?

Rotation about an Arbitrary Point

Concatenation or Composition of Transformations

- We can concatenate a large number of transformations into a single transformation
- $\mathbf{p}_2 = \mathbf{T}_{[dx \ dy]} \mathbf{S}_{[s \ s]} \mathbf{R}_{\theta} \mathbf{p}_1$
- Rules of matrix multiplication apply
- If we do not use homogeneous coordinates, what might be the problem here?

Order of Transformations

Courtesy: Sohaib Khan

Courtesy: Sohaib Khan

Order of Transformations

Rotation/Scaling/Shear, followed by Translation

$$\begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & 0 \\ a_3 & a_4 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & b_1 \\ a_3 & a_4 & b_2 \\ 0 & 0 & 1 \end{bmatrix}$$

Translation, followed by Rotation/Scaling/Shear

$$\begin{bmatrix} a_1 & a_2 & 0 \\ a_3 & a_4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_1b_1 + a_2b_2 \\ a_3 & a_4 & a_3b_1 + a_4b_2 \\ 0 & 0 & 1 \end{bmatrix}$$

Affine Transformation

Encodes rotation, scaling, translation and shear

$$x_2 = a_1 x_1 + a_2 y_1 + b_1$$
$$y_2 = a_3 x_1 + a_4 y_1 + b_2$$

- 6 parameters
- Linear transformation
- Parallel lines are preserved [proof?]

Recovering Best Affine Transformation

- Input: we are given some correspondences
- Output: Compute $a_1 a_6$ which relate the images

This is an optimization problem... Find the 'best' set of parameters, given the input data

Parameter Optimization: Least Squared Error Solutions

Let us first consider the 'simpler' problem of fitting a line to a set of data points... 25

Equation of best fit line ?

Line Fitting: Least Squared Error Solution

- Step 1: Identify the model
 - Equation of line: y = mx + c
- Step 2: Set up an error term which will give the goodness

Slides 24 to 29 can be ignored

Error induced by ith point:

$$e_i = mx_i + c - y_i$$

Error for whole data: $E = \sum_i e_i^2$

$$\mathsf{E} = \Sigma_{\mathsf{i}} (mx_{\mathsf{i}} + c - y_{\mathsf{i}})^2$$

 Step 3: Differentiate Error w.r.t. parameters, put equal to zero and solve for minimum point

Line Fitting: Least Squared Error Solution

$$E = \sum_{i} (mx_i + c - y_i)^2$$

Slides 24 to 29
$$\frac{\partial E}{\partial c} = \sum_{i} (mx_i + c - y_i)x_i = 0$$

$$\frac{\partial E}{\partial c} = \sum_{i} (mx_i + c - y_i) = 0$$

$$\begin{bmatrix} \sum_{i} x_{i}^{2} & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} 1 \end{bmatrix} \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} \sum_{i} x_{i} y_{i} \\ \sum_{i} y_{i} \end{bmatrix}$$

,	Χ	V		
		,		
1.	.3	5.7		
2.	.4	7.3		
3.	.4	10.5		
4.	.6	11.8		
5.	.3 _n	13.8		
an	.6	26.	ത്നി	261
An h	.4	15.3	ى م م	961
8.	.0	17.9		
8.	.9	20.8		

$$\begin{bmatrix} 380.63 & 56.1 \\ 56.1 & 10 \end{bmatrix} \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} 914.68 \\ 140.4 \end{bmatrix}$$

20.9

9.2

Solution: m = 1.9274 c = 3.227

Courtesy: Sohaib Khan

Line Fitting: Least Squared Error Solution

Least Squares Error Solution

$$\begin{bmatrix} x_{j}^{*} \\ y_{j}^{*} \end{bmatrix} = \begin{bmatrix} a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{5} & a_{6} \end{bmatrix} \begin{bmatrix} x'_{j} \\ y'_{j} \end{bmatrix}$$
Slides 240to 129 Ican be ignored

$$E(a_1, a_2, a_3, a_4, a_5, a_6) = \sum_{j=1}^{n} (x_j^* - x_j)^2 + (y_j^* - y_j)^2$$

$$E(\mathbf{a}) = \sum_{j=1}^{n} \left((a_1 x'_j + a_2 y'_j + a_3 - x_j)^2 + (a_4 x'_j + a_5 y'_j + a_6 - y_j)^2 \right)$$

Least Squares Error Solution

$$E(\mathbf{a}) = \sum_{j=1}^{n} \left((a_1 x_j + a_2 y_j + a_3 - x_j^{'})^2 + (a_4 x_j + a_5 y_j + a_6 - y_j^{'})^2 \right)$$

Minimize E w.r.t. a

Slides 24 to 29 can be ignored

$$\begin{bmatrix} \sum_{j} x_{j}^{2} & \sum_{j} x_{j} y_{j} & \sum_{j} x_{j} & 0 & 0 & 0 \\ \sum_{j} x_{j} y_{j} & \sum_{j} y_{j}^{2} & \sum_{j} y_{j} & 0 & 0 & 0 \\ \sum_{j} x_{j} & \sum_{j} y_{j} & \sum_{j} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sum_{j} x_{j}^{2} & \sum_{j} x_{j} y_{j} & \sum_{j} x_{j} \\ 0 & 0 & 0 & \sum_{j} x_{j} y_{j} & \sum_{j} y_{j}^{2} & \sum_{j} y_{j} \\ 0 & 0 & 0 & \sum_{j} x_{j} y_{j} & \sum_{j} y_{j} & \sum_{j} y_{j} \\ 0 & 0 & 0 & \sum_{j} x_{j} & \sum_{j} y_{j} & \sum_{j} 1 \end{bmatrix} \begin{bmatrix} \sum_{j} x_{j} x_{j} \\ a_{5} \\ a_{6} \end{bmatrix} = \begin{bmatrix} \sum_{j} x_{j} x_{j} \\ \sum_{j} x_{j} x_{j} \\ \sum_{j} x_{j} y_{j} \\ \sum_{j} y_{j} y_{j} \\ \sum_{j} y_{j} y_{j} \end{bmatrix}$$

Courtesy: Sohaib Khan

Recovering Best Affine Transformation

 Given three pairs of corresponding points, we get 6 equations

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ x_3 & y_3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_3 & y_3 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix} = \begin{bmatrix} x_1' \\ y_1' \\ x_2' \\ y_2' \\ x_3' \\ y_3' \end{bmatrix}$$

$$\mathbf{A}\mathbf{X} = \mathbf{B} \qquad \mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$$

Courtesy: Sohaib Khan

Pseudo inverse

For an over-constrained linear system

$$Ax = B$$

A has more rows than columns

Multiply by A^T on both sides

$$A^{T}Ax = A^{T}B$$

A^TA is a square matrix of as many rows as **x**

We can take its inverse

$$x = (A^TA)^{-1}A^TB$$

Pseudo-inverse gives the least squares error solution! [Proof?]

Recovering Best Affine Transformation

- In general, we may be given n correspondences
- Concatenate n correspondences in A and B
- **A** is 2n x 6
- B is 2n x I
- Solve using Least Squares
- $x = (A^TA)^{-1}A^TB$

2D Displacement Models

▶ Translation:

$$x' = x + b_1$$
$$y' = y + b_2$$

▶ Rigid:

$$x' = x\cos\theta - y\sin\theta + b_1$$
$$y' = x\sin\theta + y\cos\theta + b_2$$

Affine:

$$x' = a_1 x + a_2 y + b_1$$

 $y' = a_3 x + a_4 y + b_2$

Projective:

$$x' = \frac{a_1 x + a_2 y + b_1}{c_1 x + c_2 y + 1}$$
$$y' = \frac{a_3 x + a_4 y + b_2}{c_1 x + c_2 y + 1}$$

2D Affine Warping

Warping

- Inputs:
 - Image X
 - Affine Transformation A = $[a_1 \ a_2 \ b_1 \ a_3 \ a_4 \ b_2]^T$
- Output:
 - Generate X' such that X' = AX
- Obvious Process:
 - For each pixel in X
 - Apply transformation
 - At that location in X', put the same color as at the original location in X
- Problems?

- This will leave holes...
 - Because every pixel does not map to an integer location!
- Reverse Transformation
- For each integer location in X'
- Apply inverse mapping
 - Problem?
- Will not result in answers at integer locations, in general
- Bilinearly interpolate from 4 neighbors

4

2D Bilinear Interpolation

Four nearest points of (x, y)

$$(\underline{x},\underline{y}),(\underline{x},\overline{y}),(\overline{x},\underline{y}),(\overline{x},\overline{y})$$

where
$$\underline{x} = \text{int}(x)$$

 $\underline{y} = \text{int}(y)$
 $\overline{x} = \underline{x} + 1$
 $\overline{y} = y + 1$

Bilinear Interpolation

$$f'(x,y) = \overline{\varepsilon_x} \overline{\varepsilon_y} f(\underline{x},\underline{y}) + \underline{\varepsilon_x} \overline{\varepsilon_y} f(\overline{x},\underline{y}) + \overline{\varepsilon_x} \underline{\varepsilon_y} f(\underline{x},\overline{y}) + \underline{\varepsilon_x} \underline{\varepsilon_y} f(\overline{x},\overline{y})$$

$$\varepsilon_x = x - x$$

$$\varepsilon_y = y - y$$

$$\varepsilon_x = x - \underline{x}$$

$$\varepsilon_y = y - \underline{y}$$

2-D Projective Transform

- Also called 2-D Homography or Colineation.
- 8 degrees of freedom because k*H represents the same homography as H.
- Invariants? Lines map to lines, but parallel lines can become nonparallel.
- Linear Transform?
 - In projective space, yes it's linear.
 - But it represents a non-linear operation in R².

$$H = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$

Direct Linear Transform (4.1 MVG Hartly & Zisserman)

If the j-th row of the matrix H is denoted by $\mathbf{h}^{j\mathsf{T}}$, then we may write

$$\mathbf{H}\mathbf{x}_i = \begin{pmatrix} \mathbf{h}^{1\mathsf{T}}\mathbf{x}_i \\ \mathbf{h}^{2\mathsf{T}}\mathbf{x}_i \\ \mathbf{h}^{3\mathsf{T}}\mathbf{x}_i \end{pmatrix}.$$

Direct Linear Transform (4.1 MVG Hartly & Zisserman)

If the j-th row of the matrix H is denoted by $\mathbf{h}^{j\mathsf{T}}$, then we may write

$$\mathbf{H}\mathbf{x}_i = \begin{pmatrix} \mathbf{h}^{1\mathsf{T}}\mathbf{x}_i \\ \mathbf{h}^{2\mathsf{T}}\mathbf{x}_i \\ \mathbf{h}^{3\mathsf{T}}\mathbf{x}_i \end{pmatrix}.$$

$$a = (a_1, a_2, a_3)^T$$

$$\mathbf{a} = (a_1, a_2, a_3)^{\mathsf{T}}$$

$$[\mathbf{a}]_{\times} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}.$$

$$\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b} = (\mathbf{a}^{\mathsf{T}} [\mathbf{b}]_{\times})^{\mathsf{T}}.$$

$$\mathbf{a} imes \mathbf{b} = [\mathbf{a}]_{ imes} \mathbf{b} = \left(\mathbf{a}^\mathsf{T} [\mathbf{b}]_{ imes}
ight)^\mathsf{T}$$
 .

Direct Linear Transform (4.1 MVG Hartly & Zisserman)

If the j-th row of the matrix H is denoted by $\mathbf{h}^{j\mathsf{T}}$, then we may write

$$\mathbf{H}\mathbf{x}_i = \begin{pmatrix} \mathbf{h}^{1\mathsf{T}}\mathbf{x}_i \\ \mathbf{h}^{2\mathsf{T}}\mathbf{x}_i \\ \mathbf{h}^{3\mathsf{T}}\mathbf{x}_i \end{pmatrix}.$$

Writing $\mathbf{x}'_i = (x'_i, y'_i, w'_i)^\mathsf{T}$, the cross product may then be given explicitly as

$$\mathbf{x}_{i}' \times \mathbf{H}\mathbf{x}_{i} = \begin{pmatrix} y_{i}'\mathbf{h}^{3\mathsf{T}}\mathbf{x}_{i} - w_{i}'\mathbf{h}^{2\mathsf{T}}\mathbf{x}_{i} \\ w_{i}'\mathbf{h}^{1\mathsf{T}}\mathbf{x}_{i} - x_{i}'\mathbf{h}^{3\mathsf{T}}\mathbf{x}_{i} \\ x_{i}'\mathbf{h}^{2\mathsf{T}}\mathbf{x}_{i} - y_{i}'\mathbf{h}^{1\mathsf{T}}\mathbf{x}_{i} \end{pmatrix}.$$

Direct Linear Transform (4.1 MVG Hartly & Zisserman)

Writing $\mathbf{x}'_i = (x'_i, y'_i, w'_i)^\mathsf{T}$, the cross product may then be given explicitly as

$$\mathbf{x}_{i}' \times \mathbf{H}\mathbf{x}_{i} = \begin{pmatrix} y_{i}'\mathbf{h}^{3\mathsf{T}}\mathbf{x}_{i} - w_{i}'\mathbf{h}^{2\mathsf{T}}\mathbf{x}_{i} \\ w_{i}'\mathbf{h}^{1\mathsf{T}}\mathbf{x}_{i} - x_{i}'\mathbf{h}^{3\mathsf{T}}\mathbf{x}_{i} \\ x_{i}'\mathbf{h}^{2\mathsf{T}}\mathbf{x}_{i} - y_{i}'\mathbf{h}^{1\mathsf{T}}\mathbf{x}_{i} \end{pmatrix}.$$

$$\mathbf{h}^{j\mathsf{T}}\mathbf{x}_i = \mathbf{x}_i^\mathsf{T}\mathbf{h}^j$$
 Dot product of two vectors a and b can be written as $\mathbf{a}^\mathsf{T}\mathbf{b}$ or $\mathbf{b}^\mathsf{T}\mathbf{a}$.

$$\begin{bmatrix} \mathbf{0}^{\mathsf{T}} & -w_i' \mathbf{x}_i^{\mathsf{T}} & y_i' \mathbf{x}_i^{\mathsf{T}} \\ w_i' \mathbf{x}_i^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} & -x_i' \mathbf{x}_i^{\mathsf{T}} \\ -y_i' \mathbf{x}_i^{\mathsf{T}} & x_i' \mathbf{x}_i^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} \mathbf{h}^1 \\ \mathbf{h}^2 \\ \mathbf{h}^3 \end{pmatrix} = \mathbf{0}.$$

Direct Linear Transform (4.1 MVG Hartly & Zisserman)

$$\begin{bmatrix} \mathbf{0^T} & -w_i'\mathbf{x}_i^\mathsf{T} & y_i'\mathbf{x}_i^\mathsf{T} \\ w_i'\mathbf{x}_i^\mathsf{T} & \mathbf{0^T} & -x_i'\mathbf{x}_i^\mathsf{T} \\ -y_i'\mathbf{x}_i^\mathsf{T} & x_i'\mathbf{x}_i^\mathsf{T} & \mathbf{0^T} \end{bmatrix} \begin{pmatrix} \mathbf{h}^1 \\ \mathbf{h}^2 \\ \mathbf{h}^3 \end{pmatrix} = \mathbf{0}.$$

$$A_i h = 0$$

$$\begin{bmatrix} \mathbf{0}^{\mathsf{T}} & -w_i' \mathbf{x}_i^{\mathsf{T}} & y_i' \mathbf{x}_i^{\mathsf{T}} \\ w_i' \mathbf{x}_i^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} & -x_i' \mathbf{x}_i^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} \mathbf{h}^1 \\ \mathbf{h}^2 \\ \mathbf{h}^3 \end{pmatrix} = \mathbf{0}.$$

Direct Linear Transform (4.1 MVG Hartly & Zisserman)

$$\mathbf{A}_{i}\mathbf{h} = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{0}^{\mathsf{T}} & -w_{i}'\mathbf{x}_{i}^{\mathsf{T}} & y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ w_{i}'\mathbf{x}_{i}^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} & -x_{i}'\mathbf{x}_{i}^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} \mathbf{h}^{1} \\ \mathbf{h}^{2} \\ \mathbf{h}^{3} \end{pmatrix} = \mathbf{0}.$$

- How many correspondences?
- A is rank deficient!
- Null Space of A
- Invertibilty of H?
- Over determined system in the existence of noisy markings?

Projective Warping

- Same as affine.
- But now you MUST convert back to non-homogenous coordinates after applying the transformation.
 - Because 3rd component will not necessarily be 1.