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OPTIC FLOW – IMAGE SEQUENCE 
ANALYSIS



Introduction

• We have seen that we need correspondences 
of the form x↔x’ for estimation of
– Homography
– Fundamental Matrix

• Today we learn how to find such 
correspondences in a sequence of images.



Introduction
Basic Problem
• given: image sequence f(x, y, z), where (x, y) specifies the location 

and z denotes time
• wanted: displacement vector field of the image structures:

– optic flow (u(x,y,z),v(x,y,z))T

• Such correspondence problems are key problems in computer 
vision.

Similar Correspondence Problems
• computing the displacements (disparities) between the two images 

of a stereo pair
• matching (registration) of medical images that are obtained with 

different modalities, parameter settings or at different times



Introduction

What is Optic Flow Good for?
• recognition of moving pedestrians in driver 

assistant systems
• estimation of motion parameters in robotics
• reconstruction of the 3-D world from an image 

sequence (structure-from-motion)
• tracking of moving objects, e.g. human body 

motion
• video processing, e.g. frame interpolation
• efficient video coding





Grey Value Constancy Assumption

• Corresponding image structures should have the 
same grey value.

• Thus, the optic flow between frame z and z + 1 
satisfies f(x+u, y+v, z+1) = f(x, y, z).

• Unfortunately the unknown flow field (u, v)T is 
not directly accessible.
– This problem is similar to the Harris corner detection 

formulation where direction d was also not accessible. 
(How did we get around that problem?)



Linearisation by Taylor Expansion
• Let us assume that (u, v) is small and f varies slowly.
• Then a Taylor expansion around (x, y, z) gives a good 

approximation
0 = f(x+u, y+v, z+1) - f(x, y, z)

≈ f(x, y, z) + fx(x, y, z) u + fy(x, y, z) v + fz(x, y, z) - f(x, y, z)
= fx(x, y, z) u + fy(x, y, z) v + fz(x, y, z) (H.W. Prove this.)

where subscripts denote partial derivatives.
• This yields the linearised optic flow constraint (OFC)

fxu + fyv + fz = 0
where the unknown flow field (u, v)T is directly accessible.



Assumptions

We have made 2 assumptions so far:
1. Grey value constancy
2. Linearised OFC



How Realistic are These Assumptions?

• The grey value constancy assumption is often surprisingly 
realistic:
– Many illumination changes happen very slowly, i.e. over many 

frames.
– More complicated models exist that take into account 

illumination changes.

• The linearisation assumption is violated more frequently:
– Conventional video cameras often suffer from temporal 

undersampling (produce displacements over several pixels) 
while Taylor expansion is accurate only for small displacements.

– Remedies:
• use original OFC without linearisation (model becomes more difficult)
• spatial downsampling (after lowpass filtering!) (H.W. How will this 

help?)



The Aperture Problem

• The OFC fxu + fyv + fz = 0 is one equation in two 
unknowns u, v. Thus, it cannot have a unique solution.

• The OFC specifies only the flow component parallel to 
the spatial gradient ∇f = (fx, fy)T:

0 = fxu + fyv + fz = (u, v)∇f + fz

• This sheds more light on the nonuniqueness problem:
– Adding arbitrary flow components orthogonal to ∇f does 

not violate the OFC. This is called aperture problem.

http://stoomey.
wordpress.com/
2008/04/18/20/



The Aperture Problem

• Additional assumptions are necessary to get a 
unique solution.

• Specifying different additional constraints 
leads to different methods.

• Let us first analyse the flow component along 
∇f.



The Normal Flow
• Expressing the flow vector (u, v)T in terms of the basis vectors 

n=∇f/|∇f| and t=∇f⊥/|∇f| gives the flow normal and tangential 
to the edge of f:

(u,v)T = (u, v)∇f/|∇f| ∇f/|∇f| + (u, v) ∇f⊥/|∇f| ∇f⊥/|∇f|
=: (un,vn)T + (ut,vt)T.

• The OFC yields (u, v)∇f = −fz, and the normal flow becomes 

(un,vn)T =  - fz/|∇f|. ∇f/|∇f| = -1/(fx
2+fy

2) (fxfz,fyfz)T

• The normal flow is the only flow that can be computed from the 
OFC without additional constraints.
– Unfortunately, it gives poor results.



Hamburg Taxi Sequence






The Spatial Approach of Lucas and 
Kanade

• Additional assumption for dealing with the 
aperture problem: The optic flow in (x0, y0) at 
time z0 can be approximated by a constant 
vector (u, v) within some disk-shaped 
neighbourhood B(x0, y0) of radius ρ.

• least squares model: flow in (x0, y0) minimises
the local energy



The Spatial Approach of Lucas and 
Kanade

• least squares model: flow in (x0, y0) minimises
the local energy

• Computing partial derivatives and equating to 
0



The Spatial Approach of Lucas and 
Kanade

• The unknowns u and v are constants that can 
be moved out of the integral. This yields the 
linear system

• Often one replaces the box filter with a “hard” 
window B(x, y) by a “smooth” convolution 
with a Gaussian Kρ:



The Spatial Approach of Lucas and 
Kanade

• Thus, the Lucas–Kanade method solves a 2 × 2 
linear system of equations.

• The (spatial) structure tensor Jρ serves as 
system matrix.





The Spatial Approach of Lucas and 
Kanade

When Does the Linear System Have No Unique 
Solution?

• rank(J) = 0 (two vanishing eigenvalues):
Happens if the spatial gradient vanishes in the 
entire neighbourhood.
Nothing can be said in this case.
Simple criterion: trace (J) = j1,1 + j2,2 ≤ ε.
(Remember that J is positive semidefinite)



The Spatial Approach of Lucas and 
Kanade

When Does the Linear System Have No Unique Solution?

• rank(J) = 1 (one vanishing eigenvalue):
Happens if we have the same (nonvanishing) spatial 
gradient within the entire neighbourhood.
Then both equations are linearly dependent (infinitely 
many solutions).
Simple criterion: det (J) = j1,1 j2,2 − j1,2

2 ≤ ε (while trace(J) > 
ε).
In this case the aperture problem persists. 
One can only compute the normal flow 

(un,vn)T = -1/(fx
2+fy

2) (fxfz,fyfz)T





The Spatial Approach of Lucas and 
Kanade

Advantages
• simple and fast method
• requires only two frames (low memory requirements)
• good value for money: results often superior to more 

complicated approaches

Disadvantages
• problems at locations where the local constancy 

assumption is violated: flow discontinuities and non-
translatory motion (e.g. rotation)

• local method that does not allow to compute the flow field 
at all locations



The Spatiotemporal Approach of 
Biguen et al.

• Optic flow is regarded as orientation in the 
space–time domain and formulated as a 
principal component analysis problem of the 
structure tensor.

• We search for the direction with the least grey 
value changes within a 3-D ball-shaped 
neighbourhood B(x0,y0,z0) of radius ρ.



The Spatiotemporal Approach of 
Biguen et al.

• It is given by the unit vector w=(w1,w2,w3)T

that minimises

• When re-normalising the third component of 
the optimal w to 1, the first two components 
give the optic flow:

u = w1/w3, v = w2/w3



The Spatiotemporal Approach of 
Biguen et al.

• Using the spatiotemporal gradient notation 
∇3f := (fx, fy, fz)T one minimises

with the constraint ||w|| =1



The Spatiotemporal Approach of 
Biguen et al.

• The desired vector w is the normalised
eigenvector to the smallest eigenvalue of

• Summation in region Bρ can be replaced by 
Gaussian convolution. Leads to a principal 
component analysis of the spatiotemporal 
structure tensor



The Spatiotemporal Approach of 
Biguen et al.

Flow Classification with the Eigenvalues of the Structure Tensor

Let μ1≥μ2≥μ3≥0 be the eigenvalues of Jρ.

• rank(J) = 0 (three vanishing eigenvalues):
If tr J = j1,1 + j2,2 + j3,3 ≤ τ1, nothing can be said: The gradients are too small.

• rank(J) = 3 (no vanishing eigenvalues):
If μ3≥ τ2, then the assumption of a locally constant flow is violated. Either a flow 
discontinuity or noise dominates.

• rank(J) = 1 (two vanishing eigenvalues):
If μ2≤τ3, we have two low-contrast eigendirections. No unique flow exists 
(aperture problem). One can compute the normal flow only.

• rank(J) = 2 (one vanishing eigenvalue):
In this case the optic flow results from the eigenvector w to the smallest 
eigenvalue μ3. Normalising its third component to 1, the first two components give 
u and v.



The Spatiotemporal Approach of 
Biguen et al.



The Spatiotemporal Approach of 
Biguen et al.

Advantages
• high robustness with respect to noise
• good results for translatory motion
• eigenvalues of the spatiotemporal structure tensors provide 

detailed information on the optic flow

Disadvantages
• more complicated than Lucas–Kanade: numerical principal 

component analysis of a 3 × 3 matrix
• problems at flow discontinuities and locations with non-translatory

motion (e.g. rotation)
• local method that does not give full flow fields
• several threshold parameters



Summary of Local Optic Flow Methods

• Assuming grey value constancy leads to the Optic 
Flow Constraint (OFC).
– It allows to compute the normal flow only (aperture 

problem).
– Computing the full flow requires additional 

assumptions.
• Lucas and Kanade assume a locally constant flow

(in 2D).
– This yields a linear system of equations with the 

spatial structure tensor as system matrix.



Summary of Local Optic Flow Methods

• The method of Biguen et al. estimates the 
flow as orientation in the spatiotemporal 
domain.
– It leads to a principal component analysis problem 

of the spatiotemporal structure tensor.

• Both are local methods that do not compute 
the flow at every pixel. That is, the flow field is 
not dense.



Variational Method of Horn and 
Schunck

• At some given time z the optic flow field is 
determined as minimising the function (u(x, 
y), v(x, y))T of the energy functional

• Has a unique solution that depends 
continuously on the image data.



Variational Method of Horn and 
Schunck

• Regularisation parameter  α>0 determines 
smoothness of the flow field:
– α0 yields the normal flow.
– The larger α, the smoother the flow field.



Optic flow computation using the Horn–Schunck method. Top left: Frame 10 of 
a synthetic image sequence. Top right: Frame 11. Bottom left: Optic flow, vector 
plot. Bottom right: Optic flow, colour-coded. Author: J. Weickert (2000).





Variational Method of Horn and 
Schunck

Main advantage
• Dense flow fields due to filling-in effect:

– At locations, where no reliable flow estimation is 
possible (small |∇f|), the smoothness term 
dominates over the data term.

• This propagates data from the neighbourhood.
• No additional threshold parameters necessary



How to solve for the flow field (u,v)?

• Step 1: Going to the Euler-Lagrange Equations



How to solve for the flow field (u,v)?



How to solve for the flow field (u,v)?



Step 2: Discretisation
• Approximate required first and second order derivatives 

using simple difference operators.
• Yields the difference equations

for all pixels (i=1,…,N) where h is the grid size (usually 1).
• Can be written as a sparse but very large linear system 

Bx=d. 
– Size of B will be 69GB for a 256x256 image!

How to solve for the flow field (u,v)?



How to solve for the flow field (u,v)?

Step 3: Solving the Linear System
• Jacobi Method: Iterative way of solving Bx=d

1. Let B=D−N with a diagonal matrix D and a remainder N.
2. Then the problem Dx = Nx + d is solved iteratively using 

x(k+1) = D−1(Nx(k) + d)

• low computational effort per iteration if B is sparse:
– 1 matrix–vector product, 1 vector addition, 1 vector scaling

• only small additional memory requirement: vector x(k)

• well-suited for parallel computing
• residue r(k) := Bx(k)−d allows simple stopping criterion:

stop if |r(k)|/ |r(0)|<ε



• All of the above boils down to a very simple iterative 
scheme

with k = 0, 1, 2, ... and an arbitrary initialisation (e.g. 
null vector).

• All of you can implement this easily! (Assignment 5)

How to solve for the flow field (u,v)?



Flow 
estimate at 
pixel i at 
iteration 
k+1

Flow estimate at 
pixel i at iteration k

h=grid distance (usually h=1)
α=smoothness parameter
N(i)=set of neighboring pixels of pixel i
fxi , fyi , fzi = spatial and temporal gradients at pixel i.

Flow estimate at 
pixel j at iteration k





Summary of Global Optic Flow 
Methods

• Variational methods for computing the optic 
flow are global methods.

• Create dense flow fields by filling-in
• Model assumptions of the variational Horn 

and Schunck approach:
1. grey value constancy,
2. smoothness of the flow field

• Mathematically well-founded



Summary of Global Optic Flow 
Methods

• Minimising the energy functional leads to 
coupled differential equations.

• Discretisation creates a large, sparse linear 
system of equations.
– can be solved iteratively, e.g. using the Jacobi 

method
• Variational methods can be extended and 

generalised in numerous ways, both with 
respect to models and to algorithms.



Assignment 5
• Due: Monday, February 2
• For the image pairs present in the Assignment 5 folder on \\printsrv, 

implement and run the optic flow methods of
– Lucas and Kanade (20 Marks)

• Use 7x7 neighbourhoods.
• Visualize the magnitude of the optic-flow vector at each pixel.
• Report results as standard deviation of Gaussian kernel is increased from ρ = 2 to 4 to 8 

to 16. 
– Horn and Schunck (30 Marks)

• Set h=1
• Visualize the magnitude of the optic-flow vector at each pixel.
• Report results as number of iterations is increased from 10 to 100 to 1000.
• Report results as α is increased from 1 to 10 to 100.

• Bonus (15 Marks)
– Compute the Fundamental matrix for one image pair.

• Submission: Email to phdcsf13m005@pucit.edu.pk
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