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Camera Calibration

• Denotes the estimation of the 5 intrinsic and 6 
extrinsic camera parameters.

• Many algorithms have been proposed in the 
literature.

• Basic idea: Investigate image of an object of 
known size and shape.



Camera Calibration



Camera Calibration





Camera Calibration

• Each identified point correspondence xi↔Xi
gives 2 constraints.

• Thus, for estimating 11 parameters, one has to 
find 6 corresponding points.

• Taking into account more point 
correspondences (e.g. in a least squares 
sense) makes the estimation less sensitive 
w.r.t. errors.



Cross Product

• A cross product of two 3-vectors a=(a1,a2,a3)T

and b=(b1,b2,b3)T can be written as 
a x b = [a2b3-a3b2 ; a3b1-a1b3 ; a1b2-a2b1 ]

• This can also be written in matrix form

• a x a = 0 for all vectors a.
• H.W: Compute a x a.



• xi=PXi ⇒ xi x PXi =0⇒

• A set of such image-world point 
correspondences leads to a linear system 
Av=0.

• Solve for the 12x1 vector v and rearrange to 
form the camera matrix P.

• We have already looked at solving systems of 
type Av=0 when we studied homography
estimation.
– DLT (see end of lectures 15-17)

Camera Calibration



Stereo Reconstruction

• So far, we have only investigated the 
projective geometry in the monocular case 
with a single pinhole camera.

• Considering two cameras allows us to 
reconstruct the depth of a scene from the 
displacements between the two stereo
images.

• To do this, we will study stereo geometry (also 
called epipolar geometry).



Stereo Reconstruction



Simplified Model: Stereo Geometry for 
Orthoparallel Cameras



Simplified Model: Stereo Geometry for 
Orthoparallel Cameras

Terminology
• orthoparallel cameras: two identical cameras with parallel optical axes.
• base line: connecting line between both optical centres (focal points)
• base line distance b: distance between both optical centres
• conjugated points: two points in different images that result from the 

same 3-D scene point
• epipolar plane: plane through the scene point and both optical centres
• epipolar lines: intersecting lines of the epipolar plane with both image 

planes; contain conjugated points
• epipole: image of camera centre in the other image plane
• disparity: distance between two conjugated points, if both images are 

superimposed



Depth Computation

• Place the origin of the coordinate system in 
the left camera lens centre C1.

• From the similarity of the triangles P1MC1 and 
c1m1C1 it follows that x/z=x1’/f

• From the similarity of the triangles P2MC2 and 
c2m2C2 one obtains (x − b)/z=x2’/f

• Eliminating x in both equations and using the 
fact that x1’ > x2’ gives z =bf/(x1’ - x2’). (H.W: 
Show that this formula is correct.)



Simplified Model: Stereo Geometry for 
Orthoparallel Cameras

• If the baseline distance b and the focal length f
are known in the orthoparallel case, the disparity 
|x1’−x2’| allows to compute the depth z.

• The main problem is the reliable estimation of 
the disparity:
– Often disparities can only be measured with pixel 

precision. This suggests to choose a large baseline 
distance.

– On the other hand, this may lead to more occlusions 
and makes it more difficult to find correspondences 
between both images.



Stereo Geometry for Converging 
Cameras

Conjugated points still lie along the epipolar lines. However, the two epipolar
lines are no longer parallel.





X can lie anywhere along this line.
l’ is the image of this line in second camera.
So x’ can lie anywhere along l’.



Any 2 images of the same 
planar surface in space are 
related by a homogrpahy.
Therefore x’=Hπx



All epipolar planes pass through the baseline. 
Therefore, all epipolar lines must pass through the 
epipole.



Epipolar Constraint and Fundamental 
Matrix

• Epipolar line l’ passes through x’ and epipole e’
– l’ = e’ x x’ = [e’]x x’

• Since x’=Hπx, we can write
– l’ = [e’]x Hπx = Fx where F = [e’]x Hπ is the so-called 

fundamental matrix.
– Rank(F)=2 (because [e’]x is rank 2 and Hπ is rank 3).

• Fundamental matrix F maps points in camera 1 
to corresponding epipolar lines in camera 2.
– l’=Fx



Epipolar Constraint and Fundamental 
Matrix

• Fundamental matrix F maps points in camera 
1 to corresponding epipolar lines in camera 2.
– l’=Fx

• Since x’ lies on the epipolar line l’, we must 
have x’Tl’=0.

• This gives us the epipolar constraint
– x’TFx=0



Epipolar Constraint and Fundamental 
Matrix

• F has rank 2. Thus, it is not invertible.
• F offers 7 degrees of freedom: 9 minus 2 for

– rank, 
– and scale (if F satisfies epipolar constraint, then αF 

also satisfies it).

• A system where only the fundamental matrix 
is known is called weakly calibrated.



Epipolar Constraint and Fundamental 
Matrix

• For a weakly calibrated system, one can compute for 
each pixel m1 in the first frame the corresponding 
epipolar line l2 in the second frame and vice versa:

• In this notation, a vector li = (a, b, c)T describes the 
epipolar line ax+by +c = 0.

• This creates a reduced search space (1-D) for a stereo 
matching algorithm (search along epipolar lines).

• Our earlier example of Orthoparallel cameras yielded 
horizontal epipolar lines (search in x-direction).



Estimation of the Fundamental Matrix

• If the fundamental matrix is not known 
(uncalibrated system), one can estimate it 
from point correspondences. Let us study now 
how this can be done.



Estimation of the Fundamental Matrix



• Take N>=8 conjugated point pairs.
• Sum up the squared deviations from the N 

constraints and minimise the resulting quadratic 
form

with explicit constraint ||f|| = 1 to avoid the 
trivial solution f = 0.

• We want to minimise fTAf with the constraint that 
vector f has unit norm.
– This must be familiar to you now!

Estimation of the Fundamental Matrix



Estimation of the Fundamental Matrix

• The solution to this problem is given by the 
normalised eigenvector to the smallest 
eigenvalue of the symmetric 9 × 9 matrix



Finding Conjugated Points

• Correlation-based Methods:
– Move along epipolar line and find the point where 

correlation coefficient is maximised.

• Variational Methods:
– A family of much more elegant methods with 

many other applications. For example, Horn & 
Schunk method for optic flow.



Correlation Coefficient

•
• Measures similarity of patches X and Y.
• Just a normalised inner product with values in 

the the range [-1,1].
• Higher value implies that X and Y are similar.



Basic Stereo Algorithm Outline

• Step 1: Find some correspondences (conjugated 
points) and estimate fundamental matrix F.

• Step 2: For every point x in image 1, compute 
corresponding epipolar line l’ in image 2 using 
l’=Fx.

• Compute correlation coefficients between patch 
P around x and patches along l’.
– x’ is the location with max correlation coefficient .

• Estimate depth z ∝ 1/|x-x’|
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