# SE 461 Computer Vision

Nazar Khan

**PUCIT** 

Lecture 4

#### Convolution

- Convolution implies
  - Spatial filtering
- What is a filter?
  - Something that lets some things pass through and prevents the rest from passing through.
    - Oil filter, Air filter, Noise filter

#### Convolution

- We have seen in Lecture 2 that convolution with an <u>averaging</u> mask yields
  - a smooth version of the input signal
  - by suppressing sharp changes (noise)
- The mask is also called a filter.
  - Why?
- Accordingly, convolution is also called filtering.
- Convolution with other masks/filters can yield different results
  - Derivative filtering for edge detection.

- Convolution Operation
- Mask
  - Set of pixel positions and weights

Origin of mask

| 1 | 1 | 1 |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |

| 1 | 2 | 1 |
|---|---|---|
| 2 | 4 | 2 |
| 1 | 2 | 1 |

| 1 |
|---|
| 1 |
| 1 |
| 1 |
| 1 |

- $I_1 \otimes \text{mask} = I_2$
- Convention: I<sub>2</sub> is the same size as I<sub>1</sub>
- Mask Application:
  - For each pixel
  - Place mask origin on top of pixel
  - Multiply each weight with pixel under it
  - Sum the result and put in location of the pixel

discrete convolution in 1-D:

$$(f*w)_i := \sum_{k=-\infty}^{\infty} f_{i-k} w_k$$

discrete convolution in 2-D:

$$(f*w)_{i,j} := \sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} f_{i-k, j-\ell} w_{k,\ell}$$

| 40 | 40         | 40         | 80  | 80 | 80 |
|----|------------|------------|-----|----|----|
| 40 | 40         | 40         | 80  | 80 | 80 |
| 40 | <b>1/9</b> | <b>1/9</b> | 149 | 80 | 80 |
| 40 | <b>1/9</b> | <b>1/9</b> | 149 | 80 | 80 |
| 40 | <b>1/9</b> | <b>1/9</b> | 1/9 | 80 | 80 |
| 40 | 40         | 40         | 80  | 80 | 80 |

|       | 1 | 1 | 1 |
|-------|---|---|---|
| I/9 x | 1 | 1 | 1 |
|       | 1 | 1 | 1 |

$$6*(1/9*40)+3*(1/9*80) = 53$$

| 40 | 40 | 53 | 67 | 80 | 80 |
|----|----|----|----|----|----|
| 40 | 40 | 53 | 67 | 80 | 80 |
| 40 | 40 | 53 | 67 | 80 | 80 |
| 40 | 40 | 53 | 67 | 80 | 80 |
| 40 | 40 | 53 | 67 | 80 | 80 |
| 40 | 40 | 53 | 67 | 80 | 80 |

Overall effect of this mask?

Smoothing filter









### What about edge and corner pixels?

- Expand image with virtual pixels
- Options
  - Fill with a particular value, e.g. zeros
  - Fill with nearest pixel value
  - Mirrored boundary
- Fatalism: just ignore them (not recommended)

### Frequency Interpretation

- Noise is the high frequency component of a signal.
- Convolution with averaging mask is equivalent to reducing the high frequency components of a signal.

### Frequency Interpretation







Lowpass: Reduce high frequencies. Highpass: Reduce low frequencies. Bandpass: Reduce frequencies outside a certain band.

### Frequency Interpretation

Lowpass filters: Low frequencies are less attenuated than high ones.

Highpass filters: High frequencies are less attenuated than low ones.

Bandpass filters: Structures within a specific frequency band are hardly attenuated.

# Highpass Filtering

H=I-Gaussian\*I



Left Vessel structure of the background of the eye. Right: Elimination of low-frequent background structures by subtracting a Gaussian-smoothed version from the original image. The greyscale range [-94, 94] has been rescaled to [0, 255] by an affine rescaling. Author: J. Weickert (2002).

# **Bandpass Filtering**

• B=G1\*I - G2\*I



(a) Top left: Fabric,  $257 \times 257$  pixels. (b) Top right: After lowpass filtering with a Gaussian with  $\sigma = 10$ . (c) Bottom left: Lowpass filtering with  $\sigma = 15$ . (d) Bottom right: Subtracting (b) and (c) gives a bandpass filter that visualises cloudiness on a certain scale. The greyscale range has been affinely rescaled from [-13, 13] to [0, 255]. Author: J. Weickert (2002).

# Some Properties of Convolution

#### Linearity:

$$(\alpha f + \beta g) * w = \alpha (f * w) + \beta (g * w) \quad \forall \alpha, \beta \in \mathbb{R}.$$

#### Shift Invariance:

$$T_b(f*w) = (T_bf)*w$$

for all translations  $T_b$ .

#### Commutativity:

$$f * w = w * f$$
.

Function and convolution kernel play an equal role.

#### Associativity:

$$(f*v)*w = f*(v*w).$$

Successive convolution with kernels v and w comes down to a single convolution with kernel v\*w.