SE 461 Computer Vision

Nazar Khan PUCIT Lectures 5, 6 and 7

Disclaimer

- Any unreferenced image is taken from the following web-page
 - <u>http://betterexplained.com/articles/an-</u> interactive-guide-to-the-fourier-transform/

Note

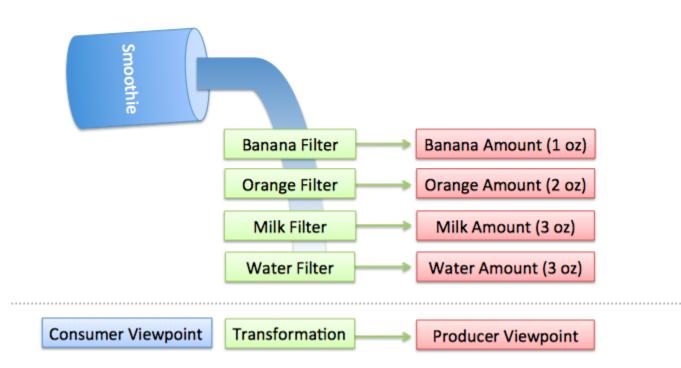
- If a hammer is the only tool you have, you will look at every problem as a nail.
- The more tools you have, the more problems you can tackle.
- Our foray into the "Fourier world" is an attempt to gather as many tools as we can.

- One of the deepest mathematical insights.
- For any signal, it extracts its "ingredients".
 This is a very powerful idea.
 - Given an observation, it gives you the causes.
 - Given an image, it gives you its constituents.
- Understanding the Fourier Transform requires some of the most beautiful mathematics ever invented.

- The mathematics can become (more than) a little bit overwhelming.
- So we'll break it down into smaller, easier steps.

Fourier Transform – An Analogy

Smoothie to Recipe



Source: http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

- We start with some pre-requisite mathematics.
 - Remember, math is not magic!
 - You can understand it if you take the correct perspective.

Mathematical Background

- π
 - circumference/diameter of any circle.
 - universal constant (π = 3.14159265...)
- e
 - Euler's number (*e* = 2.71828182...)
- j
 - non-existent, imaginary number (what!!!!)
 - makes analysis and computations easier (i^2=-1)

Complex Numbers

- Real numbers are represented by R^1 .
- We can write any real number x as x+0*i*.
- Therefore, R¹ is contained in space of complex numbers C¹.
 - Complex numbers z have a real part Re(z) and an imaginary part Im(z).
- Basis vector for R^1 is the scalar 1.
- Basis vectors for C¹ are {(1,0),(0,*i*)}.

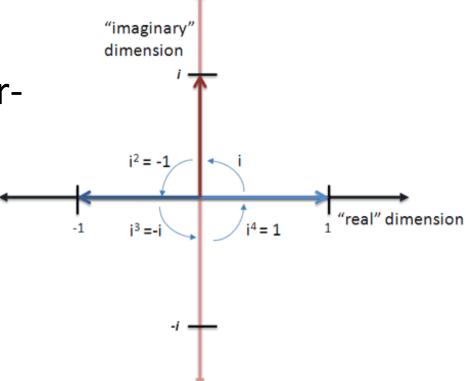
Complex Numbers

- <u>Norm</u> (magnitude, modulus) of z is given by |z|=sqrt(a²+b²).
- <u>Phase</u> is the angle θ=arctan(b/a).
- A complex number can also be represented in Polar form z=a+bi=|z|e^{iθ}.
- Conjugate of z is given by conj(z)=a-bi=|z|e^{-iθ}.
- HW: Compute the values of sqrt(z*z) and sqrt(z*conj(z)). Which one yields the norm of z?

a + bi $z=a+bi=|z|e^{i\theta}$ "imaginary" dimension b θ а "real" dimension -θ $z=a+bi=|z|e^{-i\theta}$

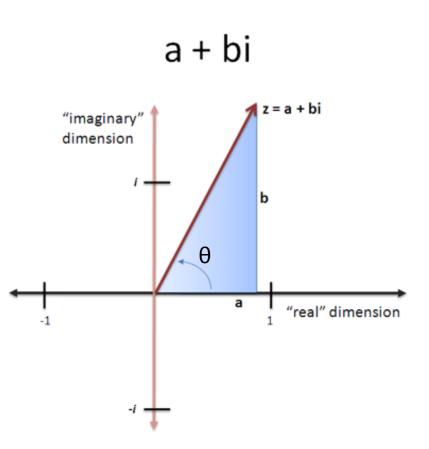
Multiplication by *i* Represents 90° Rotation in *C*

- Multiplication by *i* is a <u>rotation</u> by 90° counterclockwise in *C*.
 - 1**i=i*
 - 1**i***i*=-1
 - 1**i***i***i*=-*i*
 - 1**i***i***i***i*=1

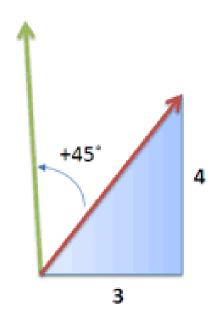


Multiplication by Complex Number Represents Rotation in C

 Multiplication by any complex number z=a+bi causes rotation by its angle θ=arctan(b/a)



Find the heading

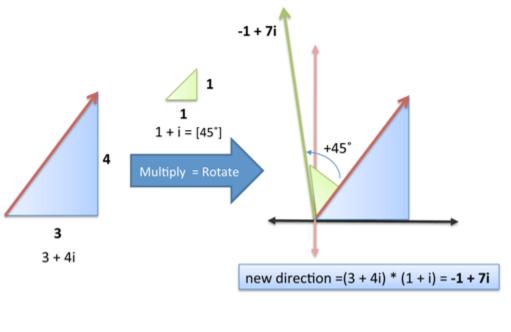


- Suppose I'm on a boat, with a heading of 3 units East for every 4 units North. I want to change my heading 45 degrees counter-clockwise. What's the new heading?
- The usual method: arctan (4/3)+45 = 98.13°

Exploiting the Complex Space

- Represent the original direction in the complex plane where rotation=multiplication
 - 3+4i
- Find the complex number representing 45° rotation.
 - 1+1i
 - Angle = $\arctan(1/1)=45^{\circ}$
- Multiply the two complex numbers.
- New direction is -1 unit East, 7 units North.
 - A complex number -1+7i
 with angle=arctan(7/-1)=98.13° as before

Applying Complex Numbers



$$(3+4i) \cdot (1+i) = 3 + 3i + 4i + 4i^{2}$$

= 3 + 7i + 4(-1)
= -1 + 7i

The Bigger Picture

- The complex space C is just a generalization of the real space R where <u>rotation amounts to</u> <u>multiplication</u>.
- We don't care about C itself but we care about the fact that in C complicated rotations can be represented as simply as multiplications.
 - We don't care whether -ve numbers actually exist or not, we care that they make calculations of profit/loss or debit/credit easier.

Euler

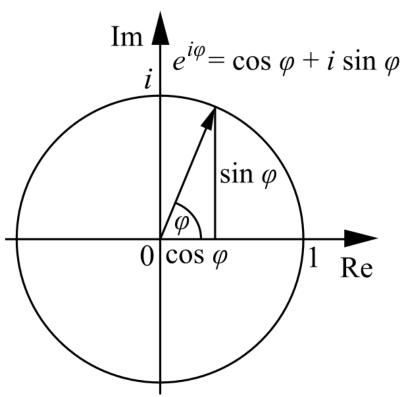
- One of the greatest mathematicians ever.
- Fundamental contributions in calculus, graph theory, optics, fluid dynamics, mechanics, astronomy and even music theory.
- Almost totally blind for the last 20 years of his life.
 - Yet did the most productive work during this time.

Source: http://en.wikipedia. org/wiki/Leonhard_ Euler

Euler's Formula

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

- Mathematics does not get more beautiful than this equation.
- What you can describe using sinusoids, you can describe using the numbers e=2.71828182... and i=sqrt(-1)

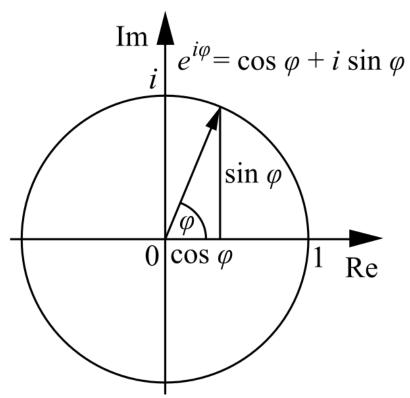


In 1988, readers of the <u>Mathematical</u> <u>Intelligencer</u> voted it "the Most Beautiful Mathematical Formula Ever". In total, Euler was responsible for three of the top five formulae in that poll.

Euler's Formula

- What can we describe using cos(θ) and sin(θ)?
 Positions on a circle.
- The formula says that that position is
 2.7182818284^{θ√-1} or simply e^{iθ}.

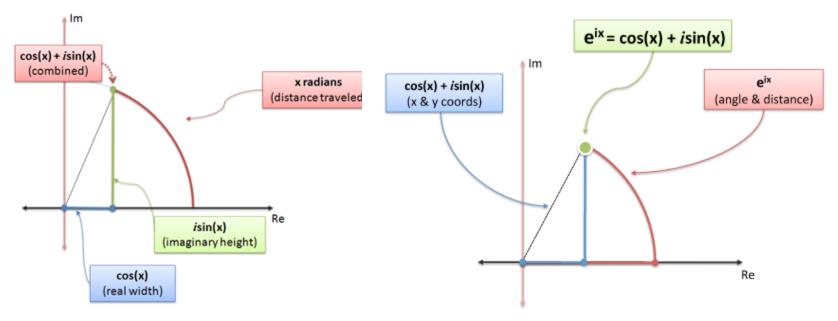
In Matlab: >> [exp(sqrt(-1)*pi/4); cos(pi/4)+i*sin(pi/4)] ans = 0.7071 + 0.7071i 0.7071 + 0.7071i



Euler's Formula

Traversing A Circle

Two Paths, Same Result



Euler's Formula – The Bigger Picture

- Describes circular motion.
- Two ways to describe motion

- Cartesian: Go 3 units east and 4 units north

– Polar: Go 5 units at an angle of 71.56 degrees

- Depending on the problem, polar or Cartesian coordinates are more useful.
- Euler's formula lets us convert between polar and Cartesian representation to use the best tool for the job.

The link between Euler's Formula and the Fourier Transform

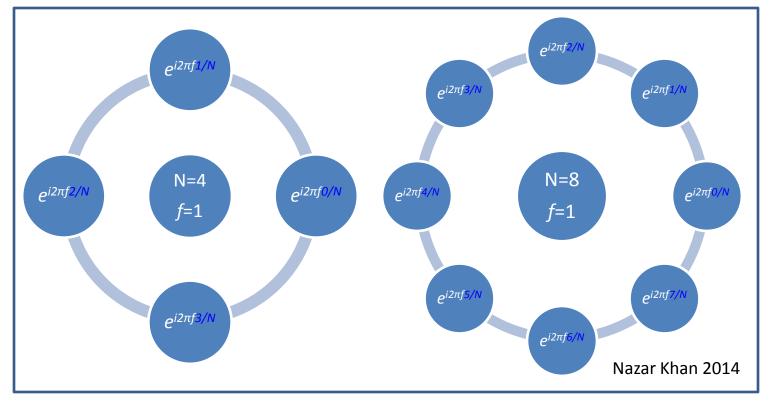
- Fourier's claim: Any signal can be made from circular motion.
- Euler's formula generates <u>all</u> circular motions.
- So Euler's formula is the tool that the Fourier Transform needs to decompose signals into circular motions.

- Fourier Transform factorises the <u>angular</u> <u>distance θ</u> into <u>angular speed ω</u> and <u>time t</u>.
 – θ is angular distance along the circle (0–2π).
- Since $\theta = \omega t$, we can write $e^{i\theta} = e^{i\omega t}$
 - So $e^{i\omega t}$ determines how far we have moved along the circle in time t travelling at speed ω .
- By varying ω and t, we can compute how far a circular motion with speed ω will be at time t.

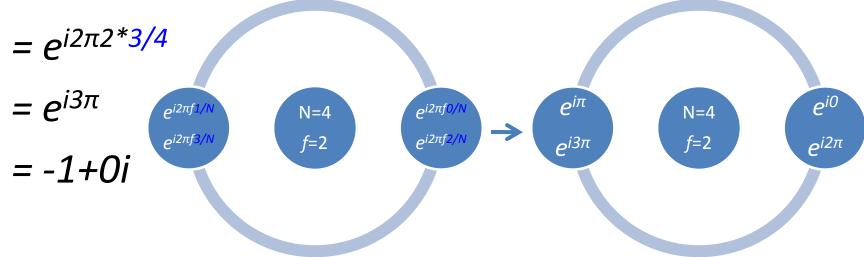
- Angular speed ω = 2πf where f is the frequency in cycles per unit time. (HW: Verify this. Hint: Just look at the definitions and/or units of ω and f.)
- So we can write $e^{i\theta} = e^{i\omega t} = e^{i2\pi ft}$
 - So $e^{i2\pi ft}$ determines how far we have moved along the circle in time *t* travelling with a frequency *f*.
- By varying f and t, we can compute how far a circular motion with frequency f will be at time t.

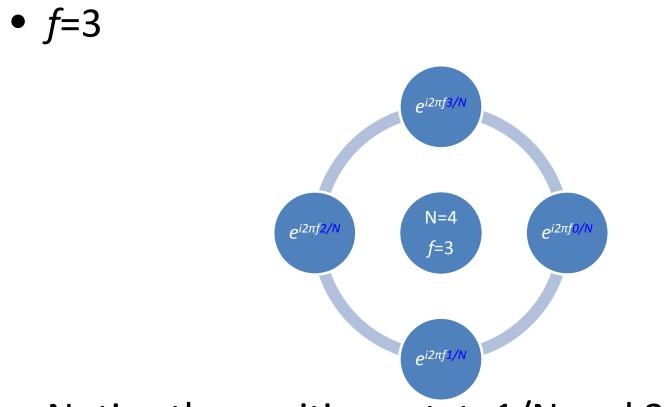
- Let total time be 1 second.
- Assume x₀, x₁,..., x_{N-1} are signal values in a time of 1 second.
- Value x_n occurs at time t=n/N seconds.
- Position on the circle at time t=n/N is given by $e^{i\theta} = e^{i\omega t}$ = $e^{i2\pi ft} = e^{i2\pi fn/N}$
- This gives us N positions along a circular motion with frequency *f*.
- The signal is also N dimensional.
- Project signal onto the circular motion by taking the dot product.

- Position on the circle at time t=n/N is given by $e^{i\theta} = e^{i\omega t} = e^{i2\pi ft} = e^{i2\pi fn/N}$
- This gives us N positions along a circular motion with frequency *f*.
- Project signal onto the circular motion by taking the dot product.



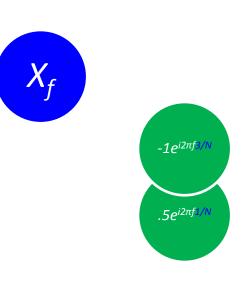
- *f*=2 implies 2 cycles/second.
- e^{i2πf3/N}





• Notice the positions at t=1/N and 3/N.

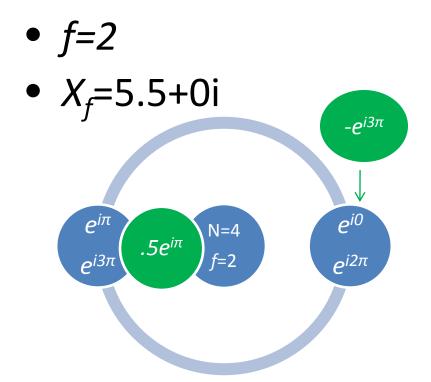
- Scale the n/Nth position by the signal value x_n.
- Let our signal be x=(2, 0.5, 3, -1) For *f*=1 *e^{i2πf1/N}* .5e^{i2πf1/N} N=4e^{i2πf2/N} e^{i2πf0/N} 3e^{i2πf0/N} 2e^{i2πf0/N} **~** *f*=1 Nazar Khan 2014 e^{i2πf3/N}



<u>Зе^{і2лf2/N}</u>

- Scale each position by the signal value and sum them up.
- We get -1+1.5*i*
- This is the Fourier coefficient *X_f* corresponding to frequency *f* for representing signal x.

Nazar Khan 2014



• H.W. Find X_f for f=3.

Fourier Transform – The Bigger Picture

- For any circular path with frequency *f*
 - For every time instant n=0 to N-1
 - Multiply $x_n e^{i2\pi fn/N}$
 - Add the products.
 - That is, compute the inner product

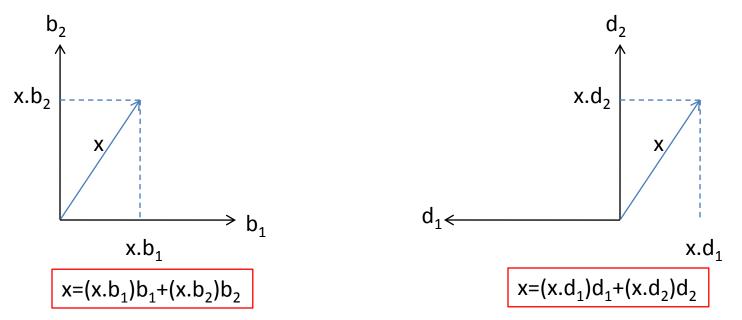
$$x \cdot e^{i2\pi f} = \sum_{n=0}^{N-1} x_n e^{i2\pi f n/N}$$

• For every frequency f, we project the signal x onto the circular motion basis $e^{i2\pi f}$.

Projection

A 2D vector x can be represented in an orthonormal basis {b₁,b₂} by the formula x=(x.b₁)b₁+(x.b₂)b₂.

- Coefficient for basis vector k is the projection $(x.b_k)$.



Fourier Transform – Projection onto Circular Motion

- For the Fourier transform, the N dimensional signal vector x is <u>projected</u> onto the circular basis vectors e^{i2πf}.
 - Coefficient for basis vector with frequency f is the projection (x. $e^{-i2\pi f}$).

$$X_{f} = x \cdot e^{-i2\pi f}$$
$$= x_{0}e^{-i2\pi f \frac{N}{N}} + \dots + x_{N-1}e^{-i2\pi f \frac{N-1}{N}}$$

– Do you notice something strange in the projection?

Fourier Transform – Projection onto Circular Motion

- Why the negative sign in the exponent?
- In order to measure lengths in any number space, a norm must be defined such that |x| = sqrt(x.x) = length of vector x.
- In the space of Complex numbers, inner product is defined as x.y = x*conj(y) where conj(y) = Re(y)-Im(y)i = |y|e^{-iθ}.
- HW: For a complex <u>vector</u> f=(f₁,...,f_N), compute f*f and f*conj(f). Which one yields the squared norm of f (given by |f|²=|f₁|²+...+|f_N|²)?
- The negative sign signifies conjugation of $e^{i2\pi f}$. So that the norm can be properly defined in Complex space.

$$X_{f} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_{n} e^{-i2\pi f \frac{n}{N}} = \frac{1}{\sqrt{N}} x \cdot e^{-i2\pi f}$$

<u>Decompose</u> the signal <u>into</u> its constituent frequencies.

Inverse Fourier Transform

$$x_{n} = \frac{1}{\sqrt{N}} \sum_{f=0}^{N-1} X_{f} e^{i2\pi f \frac{n}{N}}$$

<u>Synthesize</u> the signal <u>from</u> its constituent frequencies.

Orthonormality of the Fourier Basis

- The basis vector for different frequencies *f* are orthonormal.
- Orthogonality

$$\frac{1}{\sqrt{N}} \left(e^{-i2\pi f_p \frac{1}{N}}, \cdots, e^{-i2\pi f_p \frac{N-1}{N}} \right) \bullet \frac{1}{\sqrt{N}} \left(e^{-i2\pi f_q \frac{1}{N}}, \cdots, e^{-i2\pi f_q \frac{N-1}{N}} \right) = 0 \quad \forall p \neq q$$

• Normality

$$\frac{1}{\sqrt{N}} \left(e^{-i2\pi f_p \frac{1}{N}}, \cdots, e^{-i2\pi f_p \frac{N-1}{N}} \right) \bullet \frac{1}{\sqrt{N}} \left(e^{-i2\pi f_q \frac{1}{N}}, \cdots, e^{-i2\pi f_q \frac{N-1}{N}} \right) = 1 \quad \forall p = q$$

- So the different frequencies do not interfere with each other in representing the signal.
- HW: Prove orthonormality of Fourier basis.

Frequency Domain Filtering Pipeline

Frequency Domain Low-Pass Filtering (Smoothing)

a b c

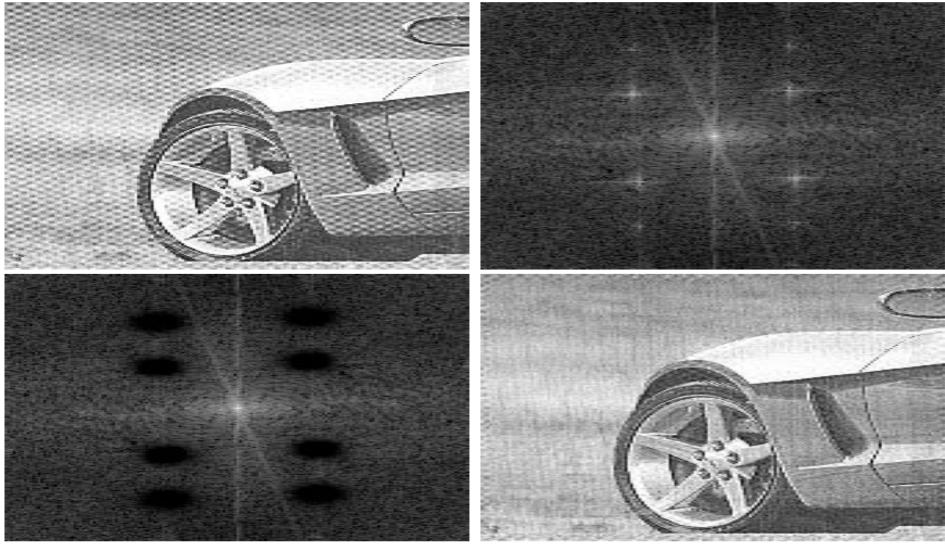
FIGURE 4.50 (a) Original image (784 \times 732 pixels). (b) Result of filtering using a GLPF with $D_0 = 100$. (c) Result of filtering using a GLPF with $D_0 = 80$. Note the reduction in fine skin lines in the magnified sections in (b) and (c).

Source: Gonzalez & Woods

Frequency Domain High-Pass Filtering (Sharpening)

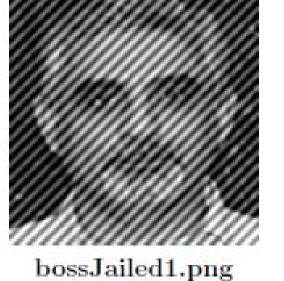
Source: Gonzalez & Woods

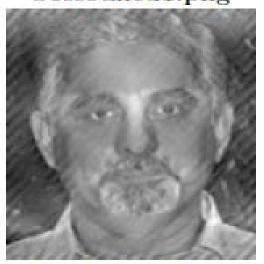
Frequency Domain Band-Pass Filtering



Source: Gonzalez & Woods

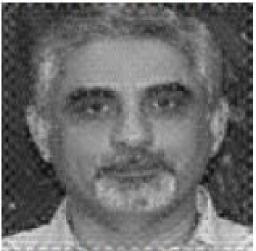
Frequency Domain Band-Pass Filtering



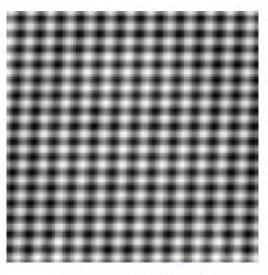


bossFreed1.png

bossJailed2.png



bossFreed2.png



mystery.png

fareedFreed.png