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Disclaimer

• Any unreferenced image is taken from the 
following web-page
– http://betterexplained.com/articles/an-

interactive-guide-to-the-fourier-transform/

http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/�
http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/�


Note

• If a hammer is the only tool you have, you will 
look at every problem as a nail.

• The more tools you have, the more problems 
you can tackle.

• Our foray into the “Fourier world” is an 
attempt to gather as many tools as we can.



Fourier Transform

• One of the deepest mathematical insights.
• For any signal, it extracts its “ingredients”.

– This is a very powerful idea.
– Given an observation, it gives you the causes.
– Given an image, it gives you its constituents.

• Understanding the Fourier Transform requires
some of the most beautiful mathematics ever 
invented.



Fourier Transform

• The mathematics can become (more than) a 
little bit overwhelming.

• So we’ll break it down into smaller, easier 
steps.



Fourier Transform – An Analogy

Source: http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/�


Fourier Transform

• We start with some pre-requisite 
mathematics.
– Remember, math is not magic!
– You can understand it if you take the correct 

perspective.



Mathematical Background

• π
– circumference/diameter of any circle.
– universal constant (π = 3.14159265...)

• e
– Euler’s number (e = 2.71828182...)

• i
– non-existent, imaginary number (what!!!!)
– makes analysis and computations easier (i^2=-1)



Complex Numbers

• Real numbers are represented by R1.
• We can write any real number x as x+0i.
• Therefore, R1 is contained in space of complex 

numbers C1.
– Complex numbers z have a real part Re(z) and an 

imaginary part Im(z).

• Basis vector for R1 is the scalar 1.
• Basis vectors for C1 are {(1,0),(0,i)}.



Complex Numbers
• Norm (magnitude, modulus) 

of z is given by 
|z|=sqrt(a2+b2).

• Phase is the angle 
θ=arctan(b/a).

• A complex number can also 
be represented in Polar form 
z=a+bi=|z|eiθ.

• Conjugate of z is given by 
conj(z)=a-bi=|z|e-iθ.

• HW: Compute the values of 
sqrt(z*z) and sqrt(z*conj(z)). 
Which one yields the norm of z?

θ

z=a+bi=|z|eiθ

z=a+bi=|z|e-iθ

-θ



Multiplication by i Represents 90o

Rotation in C
• Multiplication by i is a 

rotation by 90o counter-
clockwise in C.
 1*i=i
 1*i*i=-1
 1*i*i*i=-i
 1*i*i*i*i=1



Multiplication by Complex Number 
Represents Rotation in C

• Multiplication by any 
complex number z=a+bi
causes rotation by its 
angle θ=arctan(b/a)

θ



• Suppose I’m on a boat, with a heading of 3 units East 
for every 4 units North. I want to change my heading 
45 degrees counter-clockwise. What’s the new 
heading?

• The usual method: arctan (4/3)+45 = 98.13o



Exploiting the Complex Space
• Represent the original 

direction in the complex 
plane where 
rotation=multiplication
– 3+4i

• Find the complex number 
representing 45o rotation.
– 1+1i
– Angle = arctan(1/1)=45o

• Multiply the two complex 
numbers.

• New direction is -1 unit 
East, 7 units North.
– A complex number -1+7i 

with angle=arctan(7/-
1)=98.13o as before



The Bigger Picture

• The complex space C is just a generalization of 
the real space R where rotation amounts to 
multiplication.

• We don’t care about C itself but we care about 
the fact that in C complicated rotations can be 
represented as simply as multiplications.
– We don’t care whether –ve numbers actually exist 

or not, we care that they make calculations of 
profit/loss or debit/credit easier.



Euler

• One of the greatest 
mathematicians ever.

• Fundamental contributions in 
calculus, graph theory, optics, fluid 
dynamics, mechanics, astronomy 
and even music theory.

• Almost totally blind for the last 20 
years of his life.
– Yet did the most productive work 

during this time.

Source: 
http://en.wikipedia.
org/wiki/Leonhard_
Euler



Euler’s Formula

• Mathematics does not 
get more beautiful than 
this equation.

• What you can describe 
using sinusoids, you can 
describe using the 
numbers e=2.71828182… 
and i=sqrt(-1)

)sin()cos( θθθ iei +=

In 1988, readers of the Mathematical 
Intelligencer voted it "the Most Beautiful 
Mathematical Formula Ever“. In total, 
Euler was responsible for three of the 
top five formulae in that poll.

http://en.wikipedia.org/wiki/Mathematical_Intelligencer�
http://en.wikipedia.org/wiki/Mathematical_Intelligencer�


Euler’s Formula

• What can we describe 
using cos(θ) and sin(θ)?
– Positions on a circle.

• The formula says that 
that position is
2.7182818284θ√-1 or 
simply eiθ.

In Matlab:
>> [exp(sqrt(-1)*pi/4); cos(pi/4)+i*sin(pi/4)]
ans =

0.7071 + 0.7071i
0.7071 + 0.7071i



Euler’s Formula



Euler’s Formula – The Bigger Picture

• Describes circular motion.
• Two ways to describe motion

– Cartesian: Go 3 units east and 4 units north
– Polar: Go 5 units at an angle of 71.56 degrees

• Depending on the problem, polar or Cartesian 
coordinates are more useful. 

• Euler’s formula lets us convert between polar 
and Cartesian representation to use the best 
tool for the job.



The link between Euler’s Formula and 
the Fourier Transform

• Fourier’s claim: Any signal can be made from 
circular motion.

• Euler's formula generates all circular motions.
• So Euler’s formula is the tool that the Fourier 

Transform needs to decompose signals into 
circular motions.



Fourier Transform

• Fourier Transform factorises the angular 
distance θ into angular speed ω and time t.
– θ is angular distance along the circle (0—2π).

• Since θ = ωt, we can write eiθ = eiωt

– So eiωt determines how far we have moved along 
the circle in time t travelling at speed ω.

• By varying ω and t, we can compute how far a 
circular motion with speed ω will be at time t.



Fourier Transform

• Angular speed ω = 2πf where f is the frequency in 
cycles per unit time. (HW: Verify this. Hint: Just 
look at the definitions and/or units of ω and f.)

• So we can write eiθ = eiωt = ei2πft

– So ei2πft determines how far we have moved along the 
circle in time t travelling with a frequency f.

• By varying f and t, we can compute how far a 
circular motion with frequency f will be at time 
t.



Fourier Transform
• Let total time be 1 second.
• Assume x0,x1,…,xN-1 are signal values in a time of 1 

second.
• Value xn occurs at time t=n/N seconds.
• Position on the circle at time t=n/N is given by eiθ = eiωt

= ei2πft = ei2πfn/N

• This gives us N positions along a circular motion with 
frequency f.

• The signal is also N dimensional.
• Project signal onto the circular motion by taking the 

dot product.



Fourier Transform
• Position on the circle at time t=n/N is given by eiθ = eiωt = ei2πft = ei2πfn/N

• This gives us N positions along a circular motion with frequency f.
• Project signal onto the circular motion by taking the dot product.

N=4
f=1

ei2πf1/N

ei2πf0/N

ei2πf3/N

ei2πf2/N
N=8
f=1

ei2πf2/N

ei2πf1/N

ei2πf0/N

ei2πf7/N

ei2πf6/N

ei2πf5/N

ei2πf4/N

ei2πf3/N
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Fourier Transform

• f=2 implies 2 cycles/second.
• ei2πf3/N 

= ei2π2*3/4

= ei3π

= -1+0i
N=4
f=2

ei2πf0/N

ei2πf2/N

ei2πf1/N

ei2πf3/N

N=4
f=2

ei0

ei2π

eiπ

ei3π



Fourier Transform

• f=3

• Notice the positions at  t=1/N and 3/N.

N=4
f=3

ei2πf3/N

ei2πf0/N

ei2πf1/N

ei2πf2/N



Fourier Transform

• Scale the n/Nth position by the signal value xn.
• Let our signal be x=(2, 0.5, 3, -1)
• For f=1

N=4
f=1

ei2πf1/N

ei2πf0/N

ei2πf3/N

ei2πf2/N 2ei2πf0/N

.5ei2πf1/N

3ei2πf0/N

Nazar Khan 2014



Fourier Transform
• Scale each position by the 

signal value and sum them 
up.

• We get -1+1.5i
• This is the Fourier coefficient 

Xf corresponding to 
frequency f for representing 
signal x.

Nazar Khan 2014

2ei2πf0/N

.5ei2πf1/N

3ei2πf2/N

-1ei2πf3/N

Xf



• f=2
• Xf=5.5+0i

• H.W. Find Xf for f=3.

N=4
f=2

ei0

ei2π

eiπ

ei3π

Fourier Transform

2ei0 3ei2 π.5eiπ

-ei3π



Fourier Transform – The Bigger Picture

• For any circular path with frequency f
– For every time instant n=0 to N-1

• Multiply xn.ei2πfn/N

– Add the products.
– That is, compute the inner product 

• For every frequency f, we project the signal x 
onto the circular motion basis ei2πf.



Projection

• A 2D vector x can be represented in an 
orthonormal basis {b1,b2} by the formula 
x=(x.b1)b1+(x.b2)b2.
– Coefficient for basis vector k is the projection (x.bk).

b1

b2

x

x.b1

x.b2

d1

d2

x

x.d1

x.d2

x=(x.b1)b1+(x.b2)b2 x=(x.d1)d1+(x.d2)d2



Fourier Transform – Projection onto 
Circular Motion

• For the Fourier transform, the N dimensional 
signal vector x is projected onto the circular 
basis vectors ei2πf.
– Coefficient for basis vector with frequency f is the 

projection (x.e-i2πf).

– Do you notice something strange in the 
projection?
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Fourier Transform – Projection onto 
Circular Motion

• Why the negative sign in the exponent?
• In order to measure lengths in any number space, a 

norm must be defined such that |x| = sqrt(x.x) = length 
of vector x.

• In the space of Complex numbers, inner product is 
defined as x.y = x*conj(y) where conj(y) = Re(y)-Im(y)i = 
|y|e-iθ.

• HW: For a complex vector f=(f1,…,fN), compute f*f and 
f*conj(f). Which one yields the squared norm of f 
(given by |f|2=|f1|2+…+|fN|2)?

• The negative sign signifies conjugation of ei2πf. So that 
the norm can be properly defined in Complex space.



Fourier Transform
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Decompose the signal into its 
constituent frequencies.



Inverse Fourier Transform
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Synthesize the signal from its 
constituent frequencies.



Orthonormality of the Fourier Basis
• The basis vector for different frequencies f are 

orthonormal.
• Orthogonality

• Normality

• So the different frequencies do not interfere with each 
other in representing the signal.

• HW: Prove orthonormality of Fourier basis.

qpee
N

ee
N

N
Nfi

NfiN
Nfi

Nfi qqpp ≠∀=







•






 −
−−

−
−− 0,,1,,1 1212

1212 ππππ


qpee
N

ee
N

N
Nfi

NfiN
Nfi

Nfi qqpp =∀=







•






 −
−−

−
−− 1,,1,,1 1212

1212 ππππ




Frequency Domain Filtering Pipeline

Image FT H(f) IFT Filtered 
Image



Frequency Domain Low-Pass Filtering 
(Smoothing)

Source: Gonzalez & Woods



Frequency Domain High-Pass Filtering 
(Sharpening)

Source: Gonzalez & Woods



Frequency Domain Band-Pass Filtering 

Source: Gonzalez & Woods



Frequency Domain Band-Pass Filtering 
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