CS 565 Computer Vision

Nazar Khan PUCIT Lecture 11: Line Detection via Hough Transform

Note

- 1. Missing classes/assignments/quizzes is unacceptable.
 - You will not be able to pass the exams.
- 2. Follow submission instructions carefully.
- Computer Vision is a theory + practice based course.
 You will learn only by implementing.
 - Explore/verify/reject the ideas covered in class by writing small Matlab codes.
 - The lectures cover the basic ideas implementation details are sometimes as important as the idea.
 - Some students are doing this. So don't rationalise your laziness!

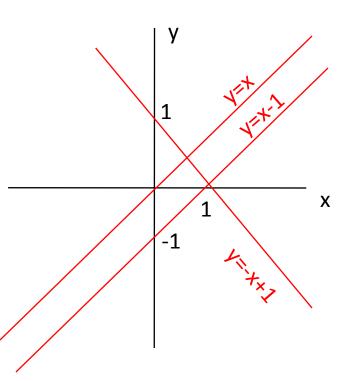
- A powerful method for detecting curves from boundary information.
- Exploits the duality between <u>points on a curve</u> and <u>parameters of the curve</u>.
- Can detect analytic as well as non-analytic curves.

Analytic Representation of a Line

Analytic Representation

– Line: y=mx+c

- Every choice of parameters (*m,c*) represents a different line.
- This is known as the <u>slope-</u> intercept parameter space.
- Weakness: vertical lines have m=∞.



Polar Representation

θ

y=mx+c

- Solution: Polar representation (*r*, θ) where
 - r = distance of line from origin
 - θ = angle of vector orthogonal to the line
- Every (*r*, *θ*) pair represents a 2D line.
- H.W. Write a function that draws a line given in Cartesian representation y=mx+c.
- H.W. Write a function that draws a line given in polar coordinates. (Hint: convert to Cartesian representation first.)

Polar Representation

θ

v=mx+c

• Cartesian to Polar

y = mx + c $y = -\frac{\cos(\theta)}{\sin(\theta)}x + \frac{r}{\sin(\theta)}$ $r = x\cos(\theta) + y\sin(\theta)$

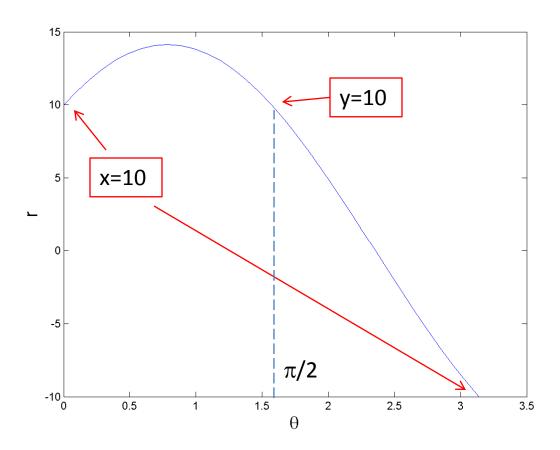
Key insight: If a line through a known point (*x*, *y*) has angle θ, how can we find *r*?

Generating all possible lines through a point (x,y)

x=10; y=10; theta=0:pi/32:pi; r=x*cos(theta)+y*sin(theta); plot(theta,r);

In the space (r, θ) of polar parameters, the light blue curve represents **all lines** that can pass through the point (10,10).

We can generate lines through (x,y) by varying θ and computing the corresponding r-value.

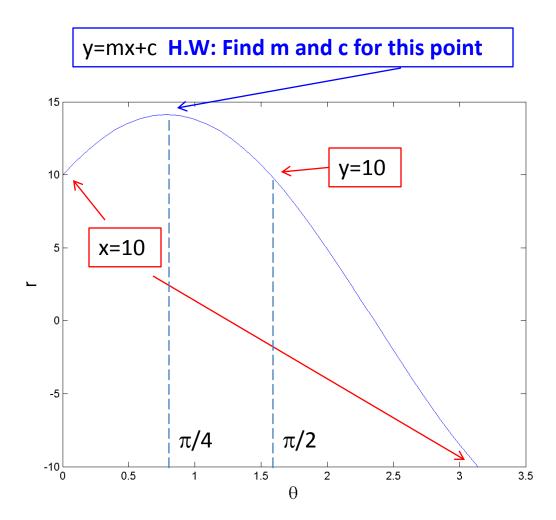


Generating all possible lines through a point (x,y)

x=10; y=10; theta=0:pi/32:pi; r=x*cos(theta)+y*sin(theta); plot(theta,r);

In the space (r, φ) of polar parameters, the light blue curve represents **all lines** that can pass through the point (10,10).

We can generate lines through (x,y) by varying φ and computing the corresponding r-value.



- All lines going through a point (x, y) can be generated by iterating over $\theta = [0, \pi]$ and computing the corresponding $r(\theta)$.
 - That is, all lines going through a point (x, y) satisfy $r(\theta) = x.cos(\theta) + y.sin(\theta)$.
- So given any edge point (x, y), iterate over $\theta = [0, \pi]$ and generate the pair $(r(\theta), \theta)$.

- The point (x, y) votes for all lines $(r(\theta), \theta)$ that pass through it.

• Valid lines can be detected by thresholding the votes.

Pseudocode

- 1. initialise 2D (vote) accumulator array A to all zeros.
- 2. for every edge point (*x*, *y*)
- 3. for $\theta = 0$ to π
 - 1. compute $r=x.cos(\theta)+y.sin(\theta)$
 - 2. increment $A(r, \theta)$ by $1 \leftarrow$ vote of point (x, y) for line (r, ϕ)
- 4. valid lines are where *A* > threshold

Detailed Pseudocode

- 1. range_ θ = 360 degrees
- 2. binsize θ = 1 degree (for example)
- 3. size_ θ = ceil(range_ θ /binsize_ θ)
- 4. range_r = 2 * maximum possible r value in image + 1
- 5. binsize_r = 1 pixel (usually)
- 6. size_r = ceil(range_r / binsize_r)
- 7. initialise 2D accumulator array A of size (size_r, size_ θ) to all zeros.
- 8. for every edge point (x, y)
 - a) for $\theta = -\pi$ to π
 - i. compute $r=x.cos(\theta)+y.sin(\theta)$
 - ii. $r_ind \leftarrow array index corresponding to r$
 - iii. θ ind \leftarrow array index corresponding to θ
 - iv. increment $A(r_ind, \theta_ind)$ by $1 \leftarrow \text{vote of point } (x, y)$ for line (r, ϕ)
- 9. valid lines are local maxima of A and where A > threshold

Hough Transform

- **Improvement 1**: After edge detection, we already know the gradient direction at (*x*,*y*).
 - So there is no need to iterate over all possible $\theta = [0, \pi]$. Use the correct θ from the gradient direction.
- **Improvement 2**: Smooth the accumulator array *A* to account for uncertainties in the gradient direction.

- Analytic representation of circle of radius r centered at (a,b) is (x-a)^2+(y-b)^2-r^2=0
- Hough space has 3 parameters (a,b,r)

For every boundary point (x,y) For every (a,b) in image plane ← Compute r(a,b) Increment A(a,b,r) by 1 A>threshold represents valid circles.

What if we know the gradient direction at (x,y)?

- If we know the gradient direction g(x,y) at point (x,y), then we also know that the center (a,b) can only lie along this line
- Hough space still has 3 parameters (a,b,r) but we search for r over a 1D space instead of a 2D plane.

For every boundary point (x,y) For every (a,b) along gradient direction g(x,y) Compute r Increment A(a,b,r) by 1 A>threshold represents valid circles.

Hough Transform

- Any analytic curve (represented in the form f(x)=0) can be detected using the Hough transform.
 - LINE: $r = x\cos\theta + y\sin\theta$
 - CIRCLE: $x_0 = x r\cos\theta$ where θ is gradient direction $y_0 = y - r\sin\theta$
 - ELLIPSE:
- $y_0 = y = rsin\theta$ $x_0 = x - a\cos\theta$ where θ is gradient direction $y_0 = y - b\sin\theta$
- GENERAL:
- f(**x**, **params**) = 0

Hough Transform

- Hough space param₁ x param₂ x ... x param_N becomes very large when number of parameters N is increased.
- Using orientation information g(x,y) in addition to positional information (x,y) leads to a smaller search space.