#### CS 565 – Computer Vision

#### Nazar Khan PUCIT Lecture 1: Course Introduction and Basics

### Disclaimer!

- Many of the lecture slides during this course will heavily borrow material from people I learned from, especially
  - Dr. Sohaib Khan
  - Dr. Joachim Weickert

#### Lecture Etiquette

#### **On Questions**

- There is no such thing as a 'stupid question'.
- Your questions will help your class-mates.
- Your questions will make sure I do not go too fast.
- Your questions provide feedback for me.

## Introduction

- Sight is our primary sensation
  - 80% of our first 12 years of learning is through vision
  - 40% of the brain is dedicated to visual processing
- Human (and Animal) Experience



# What does it mean to see?

- "To know what is where by looking"
  -- Aristotle
- Computer Vision Scientist: "How do we build a machine to do that?"
- Scientifically unsatisfactory
  - What is "what"?
  - What is "where"?
- Ongoing investigation
  - Identification
  - Localization



#### What do you see?



#### What *colors* do you see?



#### What *letters* do you see?



#### Do you see a grid of tiles?



# **Biological Vision**

- Biological Vision is a <u>very</u> <u>sparse</u> process.
- Everything entering your eye ≠ What you see.
- Our brains choose only the most crucial information

- and that is what we "see"



#### Where in the brain do we see?



The visual pathway (http://www.slideshare.net/Codeye/visual-pathway)

## What is Computer Vision?

- The goal of Computer Vision is to make useful decisions about real physical objects and scenes from their images
  - What's in the image?
  - What's happening in the video?

#### CV vs IP vs CG





# Why is computer vision hard?

- Computers are good at numerical processing
- Humans are good at perceptual processing
- We want to use a computer to mimic human perception... which is complex to understand

#### THE COMPLEXITY OF PERCEPTION

#### The Complexity of Perception



# The Complexity of Perception



#### By Edward Adelson, 1995

#### Perception





#### Perception



Ref: Light and Vision: LIFE Science Library

#### What is this?







#### The Complexity of Perception













#### Writing Programs that "See"

An Example

#### Motivation

- Humans have highly sophisticated capabilities of sensing the environment, interpreting it and taking actions accordingly.
- Human Perception: "the process of attaining awareness or understanding of sensory inform ation"
- Can machines have similar capabilities?
  - Can we write <u>algorithms</u> for perception?





#### Motivation

Machines *Compute* 

Humans *Perceive* 

#### Can *perception* arise from *computation*?

#### Gary Kasparov vs. Deep Blue (1997)



- Can evaluate about 3 positions per second
- Large chess 'knowledge', low computation ability
- Uses a lot of intuition and feeling
- Learns and adapts very quickly from his mistakes
- Can get bored, fatigued, loss of concentration
- Highly intelligent
- Selective searching of positions



- Can evaluate about 200,000,000 positions per second
- Small chess knowledge, high computation ability
- Uses only computations
- Not a learning system (machine learning algorithms were not used)
- Not affected by feelings such as Kasparov's stare
- Dumber than a 2 year old
- Brute-force evaluation of all moves

http://www.research.ibm.com/deepblue/

Why is Perception Difficult for Computational Machines?

- Example Problem:
  - Given an image, search through all possible subwindows and identify those which contain a human face

#### **Face Detection Problem**





| 62  | 87  | 119 | 142 | 156 | 164 | 167 | 168 | 176 | 182 | 188 | 188 | 187 | 189 | 194 | 199  | 195 | 194 | 192 | 195        | 195  | 193 | 193 | 193 | 197 | 193 | 194          | 198 | 202 | 199 | 195 | 192 | 182 | 191 | 186 | 143 | 75  | 24  | 21  | 42  | 44  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|------------|------|-----|-----|-----|-----|-----|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 92  | 114 | 138 | 152 | 159 | 166 | 173 | 176 | 178 | 180 | 184 | 187 | 189 | 190 | 191 | 193  | 194 | 192 | 194 | 197        | 197  | 194 | 194 | 195 | 192 | 201 | 203          | 197 | 190 | 192 | 200 | 208 | 202 | 184 | 187 | 192 | 144 | 60  | 17  | 25  | 37  |
| 113 | 129 | 147 | 155 | 159 | 167 | 175 | 180 | 181 | 181 | 183 | 189 | 195 | 195 | 195 | 193  | 197 | 196 | 199 | 202        | 203  | 202 | 201 | 203 | 200 | 207 | 210          | 208 | 205 | 207 | 205 | 198 | 201 | 192 | 193 | 199 | 180 | 118 | 52  | 11  | 31  |
| 123 | 133 | 145 | 153 | 157 | 163 | 173 | 181 | 183 | 181 | 185 | 191 | 194 | 191 | 191 | 194  | 194 | 193 | 198 | 203        | 203  | 202 | 203 | 207 | 211 | 208 | 206          | 200 | 186 | 172 | 172 | 180 | 205 | 202 | 198 | 192 | 188 | 171 | 110 | 37  | 23  |
| 125 | 133 | 141 | 147 | 152 | 159 | 170 | 178 | 178 | 178 | 182 | 190 | 192 | 191 | 191 | 195  | 187 | 197 | 204 | 204        | 202  | 206 | 208 | 207 | 210 | 189 | 160          | 132 | 106 | 90  | 91  | 99  | 137 | 157 | 180 | 191 | 195 | 190 | 152 | 100 | 29  |
| 125 | 131 | 137 | 142 | 147 | 156 | 167 | 175 | 175 | 176 | 181 | 188 | 191 | 190 | 190 | 191  | 189 | 200 | 202 | 196        | 200  | 209 | 207 | 193 | 148 | 118 | 83           | 60  | 54  | 62  | 83  | 102 | 98  | 107 | 125 | 147 | 175 | 199 | 188 | 156 | 61  |
| 123 | 128 | 135 | 142 | 149 | 158 | 168 | 174 |     |     | 195 | 189 | 191 | 189 | 188 | 187  | 193 | 195 | 193 | 191        | 194  | 187 | 160 | 131 | 83  | 67  | 57           | 67  | 89  | 113 | 136 | 153 | 139 | 130 | 127 | 137 | 159 | 186 | 187 | 168 | 126 |
| 119 | 125 | 134 | 146 | 156 | 165 | 172 | 175 |     | 187 |     | 193 |     | 2   | 192 | 190  | 0   | 188 | 87  |            |      | 133 | 2   | 6   | 68  | 68  | _            |     | 130 |     | 23  | 132 |     | 128 | 146 | 153 | 158 | 173 | 184 | 181 | 167 |
| 115 | 121 | 134 | 147 | 161 | 170 | 174 | 175 |     | 189 | 1   | 19  | ,93 | 18  | 196 | 195  |     | 18  | 177 | <u>5</u> 9 | 12   | 93  | 4   | 7   | 86  | 86  |              | 122 | 13  | 131 | -   | 1   | 110 |     | 118 | 137 | 153 | 174 | 190 | 192 | 178 |
| 115 | 120 | 130 | 145 | 160 | 171 | 174 | 174 |     | 185 |     | 18  | 187 | 18  | 191 | 190  | 1.  | V,  | 160 | 38         | 11   | 97  | 9   | 10  | 96  | 98  | 110          |     | 13  | 131 | 128 | 12  | 117 | 98  | 100 | 121 | 146 | 173 | 191 | 193 | 196 |
| 114 | 118 | 127 | 142 | 158 | 169 | 172 | 172 |     |     | 181 | 177 |     |     | 183 | 180  | 174 | - ź | 164 |            |      | 121 |     | 1   | 79  | 89  |              |     | 124 |     |     | 87  |     |     | 90  | 117 | 138 | 164 | 193 | 207 | 200 |
| 110 | 115 | 125 | 144 | 163 | 174 | 175 | 171 | 162 | 164 | 158 | 153 | 159 | 163 | 166 | 175  | 177 | 74  | 171 | 164        | 149  | 126 | 102 | 89  | 82  | 81  | 93           | 76  | 52  | 65  | 100 | 145 | 100 | 63  | 82  | 138 | 167 | 182 | 198 | 201 | 212 |
| 116 | 124 | 136 | 150 | 156 | 149 | 134 | 123 | 106 | 104 | 96  | 98  | 113 | 129 | 149 | 172  | 184 | 187 | 188 | 177        | 154  | 125 | 98  | 82  | 78  | 69  | 50           | 38  | 53  | 64  | 91  | 161 | 143 | 114 | 130 | 173 | 190 | 201 | 211 | 210 | 209 |
| 115 | 121 | 125 | 119 | 100 | 80  | 64  | 57  | 53  | 54  | 56  | 69  | 88  | 103 | 127 | 158  | 184 | 196 | 202 | 190        | 157  | 122 | 95  | 81  | 68  | 70  | 65           | 42  | 32  | 35  | 69  | 133 | 152 | 138 | 157 | 189 | 198 | 206 | 214 | 212 | 209 |
| 121 | 116 | 100 | 73  | 45  | 31  | 32  | 39  | 39  | 43  | 52  | 67  | 79  | 85  | 108 | 144  | 176 | 195 | 207 | 196        | 161  | 126 | 107 | 100 | 60  | 72  | 113          | 97  | 48  | 65  | 106 | 118 | 125 | 130 | 157 | 183 | 193 | 204 | 212 | 210 | 214 |
| 102 | 83  | 57  | 37  | 32  | 37  | 49  | 56  | 58  | 59  | 59  | 62  | 64  | 62  | 86  | 123  | 165 | 190 | 20  | ,or        | 167  | 139 | 127 | 125 | 91  | 86  | 115          | 108 | 81  | 104 | 120 | 104 | 119 | 137 | 167 | 188 | 200 | 210 | 215 | 215 | 215 |
| 65  | 47  | 32  | 38  | 60  | 80  | 85  | 81  | 85  | 85  | 80  | 75  | 68  | 56  |     |      | 141 | 172 |     |            | 10   |     | 143 | 1   |     | 120 |              | 93  | 102 | 102 | 92  | 113 | 145 | 166 | 188 | 200 | 209 | 213 | 215 | 214 | 210 |
| 52  | 51  | 57  | 73  | 93  | 106 | 108 | 104 | 101 | 99  | 91  | 86  | 84  | 72  | 62  | 6!   | 117 | 153 | 18  | 194        | 179  | 16  | 156 | 4   | 152 | 1   | 140          |     | 140 | 135 | 130 | 171 | 176 | 190 | 200 | 206 | 211 | 212 | 210 | 212 | 210 |
| 45  | 63  | 82  | 90  | 88  | 87  | 96  | 105 | 101 | 93  | 75  | 70  | 81  | 85  |     | - 73 | 04  | 145 | 18  | 201        | 4    | 18  | 171 | 3   | 171 |     | 188          | 182 | 173 | 181 | 183 | 188 | 193 | 203 | 205 | 208 | 214 | 214 | 214 | 217 | 214 |
| 58  | 83  | 82  | 66  | 67  | 65  | 56  | 54  | 76  | 67  | 96  | 88  | 54  | 75  |     | 4    | 02  | 138 | 18  | 207        |      | 1   | 186 |     |     | 18  |              |     | 189 | 192 | 198 | 198 | 206 | 208 | 211 | 215 | 215 | 212 | 210 | 210 | 213 |
| 74  | 71  | 63  | 59  | 60  | 47  | 31  | 27  | 43  | 66  | 121 | 126 | 94  | 95  | 99  | 88   | 99  | 135 | 178 | 201        | 204  | 201 | 197 | 195 | 194 | 189 | 190          | 197 | 204 | 206 | 203 | 202 | 207 | 208 | 209 | 210 | 210 | 210 | 210 | 209 | 207 |
| 79  | 61  | 48  | 45  | 50  | 57  | 49  | 31  | 25  | 59  | 114 | 127 | 118 | 123 | 120 | 117  | 105 | 141 | 182 | 202        | 206  | 207 | 205 | 200 | 191 | 185 | 183          | 189 | 191 | 189 | 194 | 201 | 205 | 208 | 208 | 205 | 204 | 206 | 207 | 205 | 202 |
| 71  | 61  | 48  | 33  | 38  | 75  | 87  | 59  | 67  | 84  | 107 | 110 | 119 | 131 | 119 | 116  | 111 | 145 | 181 | 197        | 204  | 204 | 195 | 182 | 184 | 195 | 202          | 194 | 171 | 155 | 161 | 175 | 187 | 200 | 204 | 200 | 195 | 198 | 199 | 196 | 194 |
| 68  | 63  | 55  | 39  | 38  | 71  | 90  | 72  | 90  | 101 | 113 | 115 | 134 | 145 | 121 | 112  | 110 | 131 | 153 | 166        | 175  | 179 | 168 | 152 | 156 | 177 | 190          | 182 | 166 | 154 | 144 | 133 | 153 | 171 | 187 | 188 | 185 | 185 | 186 | 185 | 179 |
| 71  | 65  | 66  | 66  | 63  | 70  | 80  | 85  | 90  | 106 | 124 | 129 | 145 | 155 | 1   | 126  | 112 | 111 | 113 | 120        | 134  | 144 | 141 | 132 | 91  | _   | -            | 05  | 134 | 160 | 150 | 122 | 126 | 140 | 158 | 169 | 172 | 170 | 171 | 172 | 166 |
| 81  | 81  | 82  | 92  | 98  | 94  | 96  | 110 | 123 | 131 | 149 | 148 | 151 | 157 | 1   | 10   | -19 | 98  |     | 93         | 10   | 1   | 114 |     | 60  | 50  | 45           | 7   | 118 | 160 | 165 | 148 | 125 | 125 | 135 | 151 | 160 | 158 | 156 | 158 | 157 |
| 91  | 103 | 99  | 99  | 115 | 122 | 119 | 125 | 136 | 139 | 161 | 167 | 173 | 179 | 15  | 126  |     | _   | 63  |            | 8    | 89  | 4   | 89  |     | 91  | 4            | 118 | 147 | 169 | 175 | 172 | 138 | 126 | 123 | 141 | 154 | 151 | 146 | 146 | 146 |
| 102 | 105 | 107 | 108 | 119 | 133 | 145 | 151 | 160 | 165 | 168 | 172 | 179 | 173 | 14  | 105  |     |     | 32  | 21         | 5    | 73  |     | 83  | 96  | 108 | 1 <b>2</b> 3 | 149 | 171 | 182 | 192 | 189 | 168 | 130 | 103 | 122 | 149 | 147 | 141 | 150 | 146 |
| 103 | 113 | 121 | 125 | 129 | 140 | 153 | 161 | 170 | 173 | 175 | 177 | 176 | 160 | 12  | 91   |     | 61  |     |            | 5    | 60  | 6   |     |     | 98  | 5            | 163 | 181 | 178 | 182 | 187 | 187 | 160 | 123 | 107 | 122 | 145 | 147 | 136 | 154 |
| 100 | 116 | 133 | 138 | 139 | 146 | 158 | 168 | 176 | 175 | 176 | 177 | 169 | 144 | 107 | 80   | 58  | 47  | 41  | 48         | 52   | 54  | 65  | 81  | 98  | 127 | 155          | 159 | 149 | 147 | 153 | 160 | 161 | 158 | 139 | 109 | 102 | 130 | 152 | 146 | 160 |
| 93  | 113 | 131 | 137 | 138 | 144 | 155 | 164 | 171 | 169 | 170 | 171 | 160 | 133 | 103 | 83   | 67  | 56  | 54  | 58         | 62   | 77  | 99  | 110 | 128 | 132 | 133          | 110 | 90  | 87  | 87  | 95  | 106 | 123 | 140 | 133 | 110 | 111 | 137 | 153 | 158 |
| 90  | 105 | 120 | 128 | 133 | 141 | 150 | 155 | 163 | 161 | 161 | 162 | 153 | 131 | 108 | 94   | 87  | 82  | 80  | 81         | 86   | 102 | 113 | 109 | 109 | 87  | 86           | 87  | 92  | 93  | 78  | 84  | 64  | 68  | 84  | 97  | 100 | 108 | 129 | 149 | 160 |
| 86  | 98  | 111 | 118 | 126 | 135 | 143 | 147 | 154 | 154 | 154 | 152 | 146 | 132 | 113 | 100  | 102 | 105 | 104 | 99         | 95   | 90  | 82  | 77  | 70  | 98  | 145          | 153 | 171 | 200 | 188 | 183 | 132 | 98  | 49  | 36  | 73  | 115 | 137 | 150 | 164 |
| 77  | 88  | 102 | 111 | 118 | 125 | 133 | 136 | 141 | 145 | 145 | 141 | 138 | 131 | 114 | 97   | 108 | 112 | 105 | 92         | 79   | 62  | 70  | 103 | 124 | 171 | 234          | 234 | 235 | 246 | 238 | 238 | 223 | 179 | 93  | 51  | 85  | 119 | 130 | 149 | 161 |
| 65  | 80  | 96  | 104 | 109 | 116 | 123 | 127 | 127 | 135 | 137 | 133 | 132 | 130 | 112 | 92   | 106 | 106 | 89  | 74         | 62   | 52  | 98  | 180 | 235 | 213 | 242          | 248 | 243 | 213 | 176 | 201 | 185 | 170 | 116 | 92  | 117 | 118 | 116 | 152 | 154 |
| 48  | 72  | 89  | 89  | 92  | 106 | 113 | 112 | 120 | 120 | 123 | 129 | 126 | 113 | 100 | 92   | 94  | 83  | 70  | 60         | 67   | 112 | 179 | 223 | 246 | 237 | 238          | 233 | 168 | 84  | 65  | 99  | 87  | 83  | 103 | 141 | 153 | 137 | 130 | 141 | 147 |
| 54  | 64  | 76  | 83  | 87  | 91  | 98  | 104 | 109 | 109 | 113 | 118 | 121 | 113 | 95  | 79   | 85  | 78  | 63  | 66         | 114  | 177 | 211 | 211 | 233 | 171 | 106          | 81  | 78  | 80  | 102 | 130 | 138 | 145 | 156 | 164 | 162 | 153 | 142 | 135 | 144 |
| 66  | 59  | 64  | 77  | 81  | 78  | 83  | 95  | 96  | 99  | 101 | 106 | 113 | 113 | 93  | 70   | 65  | 50  | 33  | 69         | 151  | 189 | 150 | 101 | 80  | 67  | 61           | 80  | 119 | 158 | 180 | 186 | 182 | 171 | 158 | 157 | 169 | 176 | 162 | 141 | 145 |
| 72  | 65  | 64  | 73  | 78  | 76  | 80  | 89  | 87  | 93  | 95  | 97  | 105 | 111 | 95  | 73   | 52  | 30  | 25  | 81         | 147  | 131 | 69  | 42  | 75  | 115 | 160          | 183 | 191 | 193 | 188 | 180 | 164 | 144 | 134 | 151 | 174 | 179 | 166 | 154 | 149 |
| 66  | 68  | 69  | 69  | 73  | 80  | 85  | 86  | 81  | 90  | 94  | 93  | 99  | 106 | 100 | 87   | 46  | 37  | 38  | 74         | 99   | 75  | 68  | 107 | 147 | 171 | 197          | 200 | 194 | 182 | 170 | 162 | 122 | 132 | 150 | 168 | 173 | 166 | 160 | 159 | 157 |
| 48  | 62  | 69  | 64  | 66  | 80  | 87  | 84  | 81  | 89  | 94  | 93  | 96  | 103 | 105 | 101  | 73  | 67  | 57  | 62         | - 74 | 78  | 103 | 148 | 170 | 172 | 175          | 171 | 155 | 133 | 115 | 107 | 122 | 143 | 160 | 163 | 165 | 171 | 170 | 162 | 169 |

## Why is pattern recognition hard?



- To write an algorithm, you may need to precisely define a human face
- Your description should be invariant to pose, 3D rotation, occlusion, race, gender
- The description should hold for all faces and nothing which is not a face should match the description
# IMPOSSIBLE?

• "If it were not for the human existence proof, we would have given up a long time ago"

- We do it, so there MUST be some method behind it.

- Computer Vision usually does not follow Biological Vision
  - It's just too complex!!!
  - Our brains are massively parallel processors

#### State of the Art in Face Detection



Viola/Jones Face Detector (2001): Using implementation in OpenCV





Results of Schneiderman/Kanade Face Detector

#### Solving Sub-problems

- The study of Computer Vision started with the effort of trying to make complete visual understanding systems
  - Initially, it was considered an easy problem
  - Marvin Minsky gave the visual perception problem as a summer project to a sophomore
- Complete Scene Understanding Systems
  - VISIONS, Hansen and Riseman, 1978
  - ACRONYM, Brooks and Binford, 1979
- Did not succeed
  - Too complex a problem
  - Lack of computational power
  - Lack of data
- We have been trying to solve sub-problems
  - The researchers will return to the complete problem at a later date

#### SAMPLE PROBLEMS FROM IMAGE PROCESSING AND COMPUTER VISION

# **Computational Photography**











http://en.wikipedia.org/wiki/High-dynamic-range\_imaging

# **Computational Photography**



#### **Reconstruction of 3D Structure**

- An image is a 2D projection of the 3D world
- 3D can be reconstructed from
  - Two images
    - Stereo Problem
  - Video with moving camera
    - Structure from Motion Problem
  - Some understanding about what is being viewed
    - Geometrical inference
    - Shape from shading or texture





Stereo image pair.



3-D reconstructions

L. Alvarez, R. Deriche, J. S'anchez, J. Weickert (2002).

# Stereo in Space Exploration

• Mar Exploration Rover





Source: http://www-robotics.jpl.nasa.gov

#### **Pose Estimation**



(a) 2D-3D Pose Estimation Sce- (b) Silhouette-based *explicit* 2Dnario 3D Pose Estimation

Figure 1. 2D-3D Pose Estimation

Author: Nazar Khan (2007)

Find the rotation *R* and translation *t* that aligns a 3D object with its 2D image.

# **Rigid Structure from Motion**



# Nonrigid Structure from Motion









Saint Jerome in his study (1630) Joseph R.Ritman Collection by Henry V Steinwick (1560-1649)









# Tracking







# **Action Recognition**





#### Source: www.google.com



# Segmentation

🗲 🤿 C 🛽 https://www.google.com.pk/search?q=computer+vision+image+segmentation&hl=en&biw=1366&bih=623&site=webhp&source=Inms&tbm=isch&sa=X&ved Q 😭 💩

# Segmentation



http://lsro.epfl.ch/page-68376-en.html

#### **COMPUTER VISION LAB @ PUCIT**

# Map Processing











# **Road Condition Classification**









Author: Naila Hamid, Nazar Khan (2014) Condition: Partially Covered Coverage: 24.3322% Night flag: 0 Road detection flag: 1 Snow Pattern: 0 Vanishing Streaks: 2 (100%) Condition: Partially Covered Coverage: 37.4144% Night flag: 0 Road detection flag: 1 Snow Pattern: 0 Vanishing Streaks: 0 (0%)

## **Ellipse Detection**





# **Ellipse Detection**



Author: Saadia Shahzad (2015)

# Segmentation via Sparse Coding







## Expression Mapping via Neural Networks



# **Undergraduate Projects**

- PUCIT SoftExpo '15
  - Expression Modeling -- Winners (Research)
  - Video Surveillance -- Runners-up (Development)
- FAST Softec '15
  - Automatic Attention Analyser -- Runners-up
- Automated Exam Checking
  - Your entrance exam was checked by a Computer Vision system developed by Kashif Murtaza and his undergraduate students.
- Book digitisation
- Automated presentation builder
- •