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Lecture 2: Mathematical Background



Mathematical Background

1. Cartesian vs. Image axes
2. Taylor series expansion
3. Matrix and Vector calculus
4. Eigenvectors
5. Constrained optimisation
6. SVD



Cartesian vs. Image axes

Cartesian axes
– Positive x-axis goes from left to right
– Positive y-axis goes upwards
– Angle measured counter-clockwise 

from positive-x-axis

Image axes
– Positive x-axis goes downwards
– Positive y-axis goes from left to right
– Angle measured counter-clockwise 

from positive-x-axis
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Cartesian vs. Image axes

x-axis goes vertically downwards from 
top-left corner (x=row)

y-axis goes 
horizontally left-to-
right from top-left 
corner (y=column)

0,0

Angle measured 
in counter-
clockwise 
direction from 
+ve x-axis



Cartesian vs. Image axes
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Cartesian vs. Image axes

0,0
x

y

By rotating the axis, the 
mathematics on the 
image axes will remain 
the same as for the 
Cartesian axes. 

Example: 
A line in the image can 
still be represented via 
y=mx+c.



Taylor series expansion
• If values of a function f(a) and its 

derivatives f'(a), f''(a), … are known at a 
value a, then we can approximate f(x) for x
close to a via the Taylor series expansion:

f(x) ≈ f(a) + (x-a) f'(a)/1! + (x-a)2 f''(a)/2! + (x-a)3 f'''(a)/3! + O((x-a)4)

• Examples
For x around a=0
 sin(x) ≈ x - x3/3! + x5/5! - x7/7! + …
 ex ≈ 1 + x2/2! + x3/3! + x4/4! + …

 Often the first-order Taylor expansion is 
used

f(x) ≈ f(a) + (x-a) f'(a)/1!

The exponential 
function ex (in blue), 
and the sum of the 
first n+1 terms of its 
Taylor series at 0 (in 
red).



Taylor series expansion

• Not very useful for x not close to a.

The sine function (blue) is closely approximated around 0 by its Taylor polynomial of 
degree 7 (pink) for a full period centered at the origin. Notice that the approximation 
becomes poor for |x-a|>π. Source: https://en.wikipedia.org/wiki/Taylor_series



Matrices and Vectors

• Vectors are denoted by lower-case bold letters 
like x, y, v etc.

• Matrices are denoted by upper-case bold 
letters like M, D, A etc.

• A vector x∈ℝd is by default a column vector 
• The corresponding row vector is obtained      

as xT = [x1 x2 … xd].
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Matrices and Vectors

For vectors x∈ℝd and y∈ℝd and z∈ℝk

• Inner product xTy = x1y1+ x2y2+ … + xdyd is a 
scalar value.

• Also called dot product or scalar product.
• Other representations: x·y and (x,y)
• Represents similarity of vectors.
 If xTy = 0, then x and y are orthogonal vectors 

(in 2D, this means they are perpendicular).



Matrices and Vectors

For vectors x∈ℝd and y∈ℝd and z∈ℝk

• Euclidean norm of vector 
||x|| = sqrt(xTx) = sqrt(x1x1+ x2x2+ … + xdxd)
represents the magnitude of the vector.

• Unit vector has norm 1. Also called 
normalised vector.

• If ||x||=1 and ||y||=1, and xTy = 0, then x
and y are orthonormal vectors.

• Outer-product xzT is a d x k matrix.



Matrix and Vector Calculus

For vectors x∈ℝd, y∈ℝd and matrix M∈ℝk x d

and scalar function f(x)
• d(yTx)/dx = d(xTy)/dx = y
• d(Mx)/dx = M
• d(xTMx)/dx = (M+MT)x
• For symmetric M, d(xTMx)/dx = 2Mx
• d(f(x))/dx = 
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Matrix and Vector calculus

For vector x∈ℝd and vector function g(x)∈ℝk

d(g(x))/dx = 
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Matrix and Vector calculus

• The gradient operator d/dx is also written as 
∇x or ∇ when the differentiation variable is 
implied.

• ∇x(Mx) = d(Mx)/dx = M (Verify this)
• ∇x =
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Matrices as linear operators

• In a matrix transformation Mx, components of 
x are acted upon in a linear fashion.

• Every matrix represents a linear 
transformation.

• Every linear transformation can be 
represented as a matrix.
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Eigenvectors

• Matrix-vector product Mv
• When a matrix M is multiplied with a vector v, 

the vector is linearly transformed
– Rotation and/or
– Scaling

• If v is not rotated but only scaled then it is 
called an eigenvector of M.

• Mv=λv where λ is the scaling factor (also 
called the eigenvalue).
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Constrained optimisation

• For optimising a function f(x) the gradient of f must 
vanish at the optimiser x*

∇f|x* = 0
• For optimising a function f(x) subject to some 

constraint g(x)=0, the gradient of the so-called 
Lagrange function

L(x, λ) = f(x)+λg(x)
must vanish at the optimiser x*

∇ L(x, λ) = ∇f|x* + λ∇g|x* = 0
where λ is the Lagrange (or undetermined) multiplier.



Constrained optimisation

• Quite often, we will need to maximise xTMx with 
respect to x where M is a symmetric matrix.
– Trivial solution:  x=∞

• To prevent trivial solution, we must constrain the 
norm of x. For example, xTx = 1.

• Lagrangian becomes L(x,λ)= xTMx + λ(xTx-1)
• Use ∂L/∂x = 0 and ∂L/∂λ = 0 to solve for optimal 

x*. (H.W. Try this)
• Similarly for minimising xTMx with respect to x.



Singular Value Decomposition (SVD)

• Any rectangular m x n matrix A with real values can be 
decomposed as Amn = UmmSmnVnn

T where 
– U is an m x m orthogonal matrix (UTU=Im)
– V is an n x n orthogonal matrix (VTV=In) and
– S is an m x n diagonal matrix

• Columns of U are orthonormal eigenvectors of AAT

• Columns of V are orthonormal eigenvectors of ATA
• Diagonal of S contains the square roots of eigenvalues

from U or V in descending order
– σ1≥ σ2≥ … σn
– Also called the singular values of A
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