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Mathematical Background

1. Cartesian vs. Image axes
2. Taylor series expansion
3. Matrix and Vector calculus
4. Eigenvectors
5. Constrained optimisation
6. SVD



Cartesian vs. Image axes

Cartesian axes
– Positive x-axis goes from left to right
– Positive y-axis goes upwards
– Angle measured counter-clockwise 

from positive-x-axis

Image axes
– Positive x-axis goes downwards
– Positive y-axis goes from left to right
– Angle measured counter-clockwise 

from positive-x-axis
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Cartesian vs. Image axes

x-axis goes vertically downwards from 
top-left corner (x=row)

y-axis goes 
horizontally left-to-
right from top-left 
corner (y=column)

0,0

Angle measured 
in counter-
clockwise 
direction from 
+ve x-axis



Cartesian vs. Image axes
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Cartesian vs. Image axes

0,0
x

y

By rotating the axis, the 
mathematics on the 
image axes will remain 
the same as for the 
Cartesian axes. 

Example: 
A line in the image can 
still be represented via 
y=mx+c.



Taylor series expansion
• If values of a function f(a) and its 

derivatives f'(a), f''(a), … are known at a 
value a, then we can approximate f(x) for x
close to a via the Taylor series expansion:

f(x) ≈ f(a) + (x-a) f'(a)/1! + (x-a)2 f''(a)/2! + (x-a)3 f'''(a)/3! + O((x-a)4)

• Examples
For x around a=0
 sin(x) ≈ x - x3/3! + x5/5! - x7/7! + …
 ex ≈ 1 + x2/2! + x3/3! + x4/4! + …

 Often the first-order Taylor expansion is 
used

f(x) ≈ f(a) + (x-a) f'(a)/1!

The exponential 
function ex (in blue), 
and the sum of the 
first n+1 terms of its 
Taylor series at 0 (in 
red).



Taylor series expansion

• Not very useful for x not close to a.

The sine function (blue) is closely approximated around 0 by its Taylor polynomial of 
degree 7 (pink) for a full period centered at the origin. Notice that the approximation 
becomes poor for |x-a|>π. Source: https://en.wikipedia.org/wiki/Taylor_series



Matrices and Vectors

• Vectors are denoted by lower-case bold letters 
like x, y, v etc.

• Matrices are denoted by upper-case bold 
letters like M, D, A etc.

• A vector x∈ℝd is by default a column vector 
• The corresponding row vector is obtained      

as xT = [x1 x2 … xd].
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Matrices and Vectors

For vectors x∈ℝd and y∈ℝd and z∈ℝk

• Inner product xTy = x1y1+ x2y2+ … + xdyd is a 
scalar value.

• Also called dot product or scalar product.
• Other representations: x·y and (x,y)
• Represents similarity of vectors.
 If xTy = 0, then x and y are orthogonal vectors 

(in 2D, this means they are perpendicular).



Matrices and Vectors

For vectors x∈ℝd and y∈ℝd and z∈ℝk

• Euclidean norm of vector 
||x|| = sqrt(xTx) = sqrt(x1x1+ x2x2+ … + xdxd)
represents the magnitude of the vector.

• Unit vector has norm 1. Also called 
normalised vector.

• If ||x||=1 and ||y||=1, and xTy = 0, then x
and y are orthonormal vectors.

• Outer-product xzT is a d x k matrix.



Matrix and Vector Calculus

For vectors x∈ℝd, y∈ℝd and matrix M∈ℝk x d

and scalar function f(x)
• d(yTx)/dx = d(xTy)/dx = y
• d(Mx)/dx = M
• d(xTMx)/dx = (M+MT)x
• For symmetric M, d(xTMx)/dx = 2Mx
• d(f(x))/dx = 
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Matrix and Vector calculus

For vector x∈ℝd and vector function g(x)∈ℝk

d(g(x))/dx = 
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Matrix and Vector calculus

• The gradient operator d/dx is also written as 
∇x or ∇ when the differentiation variable is 
implied.

• ∇x(Mx) = d(Mx)/dx = M (Verify this)
• ∇x =
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Matrices as linear operators

• In a matrix transformation Mx, components of 
x are acted upon in a linear fashion.

• Every matrix represents a linear 
transformation.

• Every linear transformation can be 
represented as a matrix.
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Eigenvectors

• Matrix-vector product Mv
• When a matrix M is multiplied with a vector v, 

the vector is linearly transformed
– Rotation and/or
– Scaling

• If v is not rotated but only scaled then it is 
called an eigenvector of M.

• Mv=λv where λ is the scaling factor (also 
called the eigenvalue).
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Constrained optimisation

• For optimising a function f(x) the gradient of f must 
vanish at the optimiser x*

∇f|x* = 0
• For optimising a function f(x) subject to some 

constraint g(x)=0, the gradient of the so-called 
Lagrange function

L(x, λ) = f(x)+λg(x)
must vanish at the optimiser x*

∇ L(x, λ) = ∇f|x* + λ∇g|x* = 0
where λ is the Lagrange (or undetermined) multiplier.



Constrained optimisation

• Quite often, we will need to maximise xTMx with 
respect to x where M is a symmetric matrix.
– Trivial solution:  x=∞

• To prevent trivial solution, we must constrain the 
norm of x. For example, xTx = 1.

• Lagrangian becomes L(x,λ)= xTMx + λ(xTx-1)
• Use ∂L/∂x = 0 and ∂L/∂λ = 0 to solve for optimal 

x*. (H.W. Try this)
• Similarly for minimising xTMx with respect to x.



Singular Value Decomposition (SVD)

• Any rectangular m x n matrix A with real values can be 
decomposed as Amn = UmmSmnVnn

T where 
– U is an m x m orthogonal matrix (UTU=Im)
– V is an n x n orthogonal matrix (VTV=In) and
– S is an m x n diagonal matrix

• Columns of U are orthonormal eigenvectors of AAT

• Columns of V are orthonormal eigenvectors of ATA
• Diagonal of S contains the square roots of eigenvalues

from U or V in descending order
– σ1≥ σ2≥ … σn
– Also called the singular values of A
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