Gaussian Distribution

Gaussian Distribution

» Known as the queen of distributions.
» Also called the Normal distribution since it models the

CS-567 Machine Learning distribution of almost all natural phenomenon.
» For continuous variables.
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where 1 is the mean, o2 is the variance and o is the
Lectures 5-8 . .
Oct 27, 29 and Nov 3, 5 2015 standard deviation.

» Reciprocal of variance, 8 = 0—12 is called precision.
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Gaussian Distribution Gaussian Distribution
Gaussian Distribution Independent and Identically Distributed
» Multivariate form for D — dimensional vector x of continuous » Let D = (xy,...,xn) be a set of N random numbers.
variables > If value of any x; does not affect the value of any other x;,
1 1 then the x;s are said to be independent.
NX[u, ) = W €xp {_Q(X o “)Tzil(x o N)} > If each x; follows the same distribution, then the x;s are said
to be identically distributed.
where the D x D matrix X is called the covariance matrix » Both properties combined are abbreviated as i.i.d.

el [22] s [ elefil it » Assuming the x;s are i.i.d under N'(u,0?)

N
P(D’Na 02) - HN(XH|M70-2)
n=1

» This is known as the likelihood function for the Gaussian.
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Gaussian Distribution Gaussian Distribution

Fitting a Gaussian Log Likelihood
» Assuming we have i.i.d data D = (x1,...,xn), how can we » Log likelihood of Gaussian becomes
find the parameters of the Gaussian distribution that generated
v In p(D|p, 02) = —— XN:(X 2o Mo — Ninen
&= —— — — —~Ino" — = In(27
> Find the (41, 02) that maximise the likelihood. This is P 202 £ 7T 2

known as the maximum likelihood (ML) approach.

» Since logarithm is a monotonically increasing function, Mlesdaiing W i, we g

maximising the log is equivalent to maximising the function. LM
» Logarithm of the Gaussian ML= Zx,,
» is a simpler function, and n=1
» is numerically superior (consider taking product of very small o >
probabilities versus taking the sum of their logarithms). > Maximising w.r.t <, we get

N
1
J%//L N Z(Xn - /~LML)2
n=1

Nazar Khan Machine Learning Nazar Khan Machine Learning
Gaussian Distribution Gaussian Distribution
Bias of Maximum Likelihood Polynomial Curve Fitting

A Probabilistic Perspective

» Exercise 1.12 _ ] o
. . » Our earlier treatment was via error minimization.
» Since E [pupm] = 1, ML estimates the mean correctly. o _
. 5 N—1\ _2 » Now we take a probabilistic perspective.
- Butsince E [03,] = (Y1) o, <t |
ML underestimates the variance by a factor Nl\71' > The real .gc.':al. dmake( actc)urate prediction t for new input x
; _ iven training data (x,t).
» This phenomenon is called bias and lies at the root of . . ’

» Prediction implies uncertainty. Therefore, target value can be

over-fitting. . e e
modelled via a probability distribution.

> We assume that given x, the target variable t has a Gaussian
distribution.

pltbe,w. B) = N(tly(x,w). 3 )
— e { (e~ yew)?}
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Gaussian Distribution

Polynomial Curve Fitting
A Probabilistic Perspective

» Knowns: Training set (x,t).
» Unknowns: Parameters w and f3.

» Assuming training data is i.i.d likelihood function becomes

N

p(tix,w, B) = [ N (taly(xa, w), 571

n=1

» Log of likelihood becomes

N
I p(thew. 5) = ~5 >yl w)—ta2+ 5 57— D in(am)
n=1

» Maximization of likelihood w.r.t w is equivalent to
minimization of %ZnNzl{y(x,,,w) — .}
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Gaussian Distribution

Polynomial Curve Fitting
A Probabilistic Perspective

» wy and By yields a probability distribution over the
prediction t.

N

p(t[x, Wni, Bme) = H N (taly (Xns Waat), Bt

n=1

» The polynomial function y(x,wyy.) alone only gives a point
estimate of t.
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Gaussian Distribution

Polynomial Curve Fitting
A Probabilistic Perspective

» So, assuming t ~ N, ML estimation leads to sum-of-squared
errors minimisation.

» Equivalently, minimising sum-of-squared errors implies t ~ A/
(i.e., noise was normally distributed).
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Gaussian Distribution

Polynomial Curve Fitting
Bayesian Perspective

» ML estimation of w maximises the likelihood function p(t|x, w)
to find the w for which the observed data is most likely.

» By using a prior p(w), we can employ Bayes' theorem
p(wlx, t) o p(t}x, w) p(w)
—_—  —
posterior likelihood  prior

» Now maximise the posterior probability p(w|x, t) to find the
most probable w given the data (x, t).

» This technique is called maximum posterior or MAP.
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Gaussian Distribution

Polynomial Curve Fitting
Bayesian Perspective

> Let the prior on parameters w be a zero-mean Gaussian

g>(l\/l+1)/2

p(wla) = N'(w[0,a 1) = (2

«
exp{—=w'w}
2

» Negative logarithm of posterior becomes

N
B R, @ 7
—In p(W|X,t,O(,B) = E X_E{y(xnvw) - tn} + Ew w

which is the same as the regularized sum-of-squares error
function with A = a/f.
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Model Selection

Model Selection

> In our polynomial fitting example, M = 3 gave the best
generalization by controlling the number of free parameters.

» Regularization coefficient X\ also achieves a similar effect.
> Parameters such as \ are called hyperparameters.
» They determine the model (model’s complexity).

» Model selection involves finding the best values for parameters
such as M and .
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Gaussian Distribution

Polynomial Curve Fitting
Bayesian Perspective

» So, assuming t ~ N and w ~ A/, MAP estimation leads to
regularized sum-of-squared errors minimisation.

» Equivalently, minimising regularized sum-of-squared errors
implies t ~ N and w ~ N (i.e., noise and the parameters
were normally distributed).

» |If precision on noise and parameters were o and 3 respectively,
then regularizer A = /.
» MAP estimation allows us to determine optimal o and (8

whereas regularised-SSE minimisation depends on a user-given
A
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Model Selection

Model Selection

» One approach is to check generalization on a separate
validation set.
» Select model that performs best on validation set.
» One standard technique is called cross-validation.
> Use % of the available data for training and the rest for
validation.
» Disadvantage: S times more training for 1 parameter. Sk
times more training for k parameters.

0T T T 7 v
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Figure: S-fold cross validation for S = 4. Every training is evaluated on
the validation set (in red) and these validation set perfromance are
averaged over the S training runs.
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Model Selection

Model Selection

> l|deally
» use only training data,
» perform only 1 training run for multiple hyperparameters,
» performance measure that avoids bias due to over-fitting.
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Curse of Dimensionality

Curse of Dimensionality

» Our polynomial curve fitting example was for a single variable
X.

» When number of variables increases, the number of parameters
increases exponentially.

Zr2 b
m2“ 4
. ] .

7 17 =

€T1 5

D=1 D=2 D=3

Figure: Curse of Dimensionality: The number of regions of a regular grid
grows exponentially with with the dimensionality D of the search space.
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Model Selection

Model Selection

» Choose model for which
In p(Dlwpmi) — M

is maximized.
» This is called Akaike Information Criterion (AIC).

» The best method is the Bayesian approach which
penalises model complexity in a natural, principled way.
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Calculus of Variations
Calculus of Real Numbers

» Considers real-valued functions f(x): mappings from a real
number x to another real number.

» If £ has a minimum in &, then £ necessarily satisfies f/(£) = 0.

» If f is strictly convex, then & is the unique minimum.
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Calculus of Variations

Calculus of Variations Calculus of Variations

Calculus of Variations

Calculus of Variations Euler-Lagrange Equation in 1-D

- Conders elhveled Prnetemes S mepsies fom & A smooth function u(x), x € [a, b] that minimises the functional

function u(x) to a real number b

o : : s E(u) = F(x, u, u")dx
> If E is minimised by a function v, then v necessarily satisfies s
a

the corresponding Euler-Lagrange equation, a differential

equation in v. necessarily satisfies the Euler-Lagrange equation
» If E is strictly convex, then v is the unique minimiser. d

Fu,— 7 Fr,=0
x

with so-called natural boundary conditions
F,=0

in x =a and x = b.
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Calculus of Variations Calculus of Variations
Calculus of Variations Calculus of Variations
Euler-Lagrange Equation in 2-D Euler-Lagrange Equations for Vector-Valued Functions
b
E(u) = /Q F(x,y, u, ux, uy)dxdy E(u,v) = / F(x,u,v,u',v)dx
a
yields the Euler-Lagrange equation creates a set of Euler-Lagrange equations:
d d d
F,——F,, ——F, =0 _ " F, =
Y dx % d_y Hy Fu e Fu/ 0
d
with the natural boundary condition F, — aFv/ =0
nT < Fu, ) —0 with natural boundary conditions for v and v.
Fy
Y

Extensions to vector-valued functions with more components are

. straightforward.
on the rectangular boundary 9Q with normal vector n. &

Extensions to higher dimensions are analogous.
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Lagrange Multipliers

Lagrange Multipliers

» Sometimes we need to optimise a function with respect to
some constraints.

» Minimise f(x) subject to x > 0.
» Maximise f(x) subject to g(x) = 0.
» The method of Lagrange Multipliers is an elegant way of
optimising functions subject to some constraints.
» The point x for which Vf(x) = 0 is called the stationary
point of f.
» Method of Lagrange multipliers finds the stationary points of a
function subject to one or more constraints.
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Lagrange Multipliers

Lagrange Multipliers

» For any surface g(x) = 0, the gradient Vg(x) is orthogonal to
the surface.
» At any maximiser x* of f(x) that also satisfies g(x) = 0,
Vf(x) must also be orthogonal to the surface g(x) = 0.
» If Vf(x) is orthogonal to g(x) = 0 at x*, then any movement
around x* along surface g(x) = 0 is orthogonal to Vf(x) and
will not increase the value of f.
» The only way to increase value of f at x* is to leave the
constraint surface g(x) = 0.

Vf(x)

XA

9(x) =0

Lagrange Multipliers

Lagrange Multipliers

» For a D dimensional vector x,g(x) =0 is a D — 1 dimensional
surface in x-space.

v

Let x and x + € be two nearby points on the surface g(x) = 0.

v

Using Taylor's expansion around x

g(x+e€) ~ g(x) + €' Vg(x)
— €' Vg(x)~0

v

In the limit ||e|| — 0

» € becomes parallel to the constraint surface g(x) = 0, and
» €' Vg(x)=0
Therefore, Vg(x) must be orthogonal to the surface g(x) = 0.

v
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Lagrange Multipliers

Lagrange Multipliers

» So, at any maximiser x*, Vf and Vg are parallel (or
anti-parallel) vectors.

» This can be stated mathematically as
Vf+AVg=0

where X\ # 0 is the so-called Lagrange multiplier.

» This can also be formulated as maximisation of the so-called
Lagrangian function

L(x,\) = f(x) + Ag(x)

with respect to x and .

» Note that this maximisation is unconstrained.
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Lagrange Multipliers

Lagrange Multipliers
At maximiser x*

0=VL=Vf(x)+ AVg(x)

which gives D + 1 equations that the optimal x* and \* must

satisfy
oL
g °
oL
g 0
oL
5 =0

If only x* is required then X\ can be eliminated without determining
its value (hence X is also called an undetermined multiplier.)
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Lagrange Multipliers

Example

Maximise 1 — x? — x5 subject to the constraint x; + x» = 1.

Lagrange Multipliers
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