CS-567 Machine Learning

Nazar Khan

PUCIT

Lectures 18-19 Dec 22, 2015 and Jan 5 2016

The Gaussian Distribution

Parametric Density Estimation

Non-Parametric Density Estimation

Mahalanobis Distance

► The term within the exponent is the so-called *Mahalanobis* distance

$$d(\mathsf{x}) = (\mathsf{x} - \mu)^T \Sigma^{-1} (\mathsf{x} - \mu)$$

- ▶ All x satisfying d(x) = k constitute the k-th iso-surface of function $d(\cdot)$.
- ► Iso-surfaces of Mahalanobis distance are iso-surfaces of the Gaussian density also.

The Gaussian Distribution

Parametric Density Estimation

Non-Parametric Density Estimation

The Gaussian Distribution

► The Gaussian distribution for a continuous, multivariate D-dimensional vector x is given by

$$\mathcal{N}(\mathsf{x}|\mu, \mathbf{\Sigma}) = rac{1}{\sqrt{(2\pi)^D |\mathbf{\Sigma}|}} \exp\left\{-rac{1}{2}(\mathsf{x}-\mu)^T \mathbf{\Sigma}^{-1} (\mathsf{x}-\mu)
ight\}$$

where the $D \times D$ matrix Σ is called the **covariance matrix** and $|\Sigma|$ is its determinant.

- ▶ Gaussian distribution is intrinsically uni-modal. Its mode is the same as its mean μ .
- ► Cannot represent multi-modal data. For that a *mixture of Gaussians* can be used.

Nazar Khan

Machine Learning

The Garage Black had

Parametric Density Estimation

Non-Parametric Density Estimati

Σ – The Covariance Matrix

- ightharpoonup Covariance matrix Σ is
 - Real-valued
 - Symmetric
 - ▶ Positive Definite (all eigenvalues are positive)
- ▶ Its eigen-decomposition can be written as

$$\Sigma = \sum_{i=1}^{D} \lambda_i \mathbf{u}_i \mathbf{u}_i^T$$

▶ Using this eigen-decomposition, its inverse can be written as

$$\mathbf{\Sigma}^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^T$$

Nazar Khan Machine Learning

Nazar Khan

The Gaussian Distribution

Σ – The Covariance Matrix

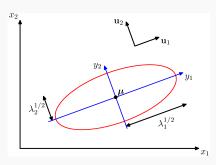


Figure: Elliptical iso-contour of a 2D Gaussian. Center of ellipse is determined by μ , axes are determined by the eigenvectors of Σ and axes lengths are determined via the eigenvalues of Σ .

Machine Learning

Central Limit Theorem

- \blacktriangleright For random variables x_1, \ldots, x_N that belong to any distribution (non-Gaussian), the sum $s = x_1 + \cdots + x_N$ approaches a Gaussian random variable as N approaches ∞ .
- ► This is known as the *Central Limit Theorem*.
- ▶ This is one reason for the popularity of the Gaussian distribution - lots of natural phenomena correspond to sums or averages of many (non-Gaussian) random variables. For large enough N, these phenomena can be modelled by Gaussian distributions.

Σ – The Covariance Matrix

ightharpoonup Covariance matrix Σ can be categorised as

Category	$\Sigma (D=2)$	DoF	Iso-contours $(D=2)$
General	$\begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \\ \sigma_2 \sigma_1 & \sigma_2^2 \end{pmatrix}$	<u>D(D+1)</u> 2	27 (a) x1
Diagonal	$\begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$	D	27 (b) x1
Isotropic	σ^2 I	1	x, (c) x1

▶ Diagonal and isotropic cases are easy to work with but cannot represent data with interesting correlations.

Fitting Gaussian density to data

- ▶ We have already covered how ML and MAP estimates for Gaussian density can be obtained.
- ▶ For computing log-likelihood of Gaussian, it is sufficient to pre-compute the following 2 statistics from the data:
 - ▶ the $D \times 1$ vector $\sum_{n=1}^{N} \mathbf{x}_n$ ▶ the $D \times D$ matrix $\sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T$
- ▶ These statistics are called *sufficient statistics* for log-likelihood of Gaussian. The individual data items can be discarded once these are computed.

Machine Learning

The Gaussian Distribution Parametric Density Estimation Non-Parametric

Parametric Density Estimation Disadvantage

- ➤ So far, we have considered fitting a parametric density function to data.
- ▶ The density function is governed by some parameters θ and the goal has been to find the optimal parameters θ^* .
- ► A major weakness of parametric methods is that if the chosen density function cannot represent the given data then no optimal parameters will exist.
 - ▶ For example, fitting Gaussian density to multi-modal data.
- ▶ Now we will study non-parametric density estimation methods.

Nazar Khan

Machine Learning

The Gaussian Distribution

Parametric Density Estimation

Non-Parametric Density Estimation

Non-Parametric Density Estimation Histogram based

- Advantages
 - Once the histogram is computed, the data can be discarded.
 This is beneficial for
 - large datasets
 - sequential learning
 - Disadvantages
 - p(x) is discontinuous *only due to* having bin edges. The underlying distribution that generated the data might not be discontinuos.
 - Curse of dimensionality.
 - ▶ If we divide each variable in a *D*-dimensional space into *M* bins, then total number of bins will be *M*^D which scales exponentially with *D*.
 - ► To ensure that each bin gets enough data to estimate probability reliably, we will need *lots of data*.

Parametric Density Estimation

Non-Parametric Density Estimation

Non-Parametric Density Estimation Histogram based

- ► We have already covered a very basic non-parametric density estimation method via histograms.
- ► The basic idea is simple.
 - Divide input space into bins.
 - Count number of observations/data points in each bin.
 - ▶ Normalise bin values to obtain probabilities.
- ► A more specific algorithm.
 - ▶ Divide input space into bins.
 - ▶ Count number of observations/data points n_i in bin i with width/volume Δ_i .
 - Normalise each bin value by dividing by its volume Δ_i . This makes small and large bins comparable.
 - ▶ Normalise again by dividing by total number of observations *N* to obtain probabilities.
- ▶ In short, probability of bin *i* can be obtained as

$$p_i = \frac{n_i}{N\Delta}$$

Nazar Kha

Machine Learning

The Gaussian Distribution

Parametric Density Estimation

Non-Parametric Density Estimation

Non-Parametric Density Estimation Alternative methods

- Better scaling with dimensionality is acheived by two other density estimation techniques
 - Kernel estimators
 - Nearest neighbours
- ▶ Based on the same idea as the histogram based method in order to estimate p(x), consider data around x.

Nazar Khan Machine Learning

Nazar Khan

Non-Parametric Density Estimation

Non-Parametric Density Estimation Alternative methods

- ightharpoonup Probability of data points in region \mathcal{R} is given by $P = \int_{\mathcal{D}} p(\mathbf{x}) d\mathbf{x}$.
- P can also be viewed as the probability of a new data point falling in region \mathcal{R} .
- ▶ For N observation, probability of K observations falling in region \mathcal{R} is given by the Binomial distribution.

$$Bin(K|N,P) = \frac{N!}{K!(N-K)!} P^K (1-P)^{N-K}$$

- ▶ Since $K \sim \text{Bin}(N, P)$, $\mathbb{E}[K] = NP$ and var(K) = NP(1 P).
- ▶ Therefore, $\mathbb{E}\left[\frac{K}{N}\right] = P$ and $\operatorname{var}\left(\frac{K}{N}\right) = \frac{P(1-P)}{N}$.
- ▶ Since $\lim_{N\to\infty} \text{var}(\frac{K}{N}) = 0$, $\frac{K}{N}$ stays close to its expected value P and we can write $\frac{K}{N} \approx P$.

Machine Learning

Non-Parametric Density Estimation

Non-Parametric Density Estimation Alternative methods

- Now we have 2 options to compute p(x)
 - 1. Fix a volume V around location \mathbf{x} , count number of data points K lying within that volume and compute p(x) using Equation (1). This method is known as density estimation through Kernel Estimators.
 - 2. Fix a number K and find the K closest data points around location \mathbf{x} , compute volume V of the region encompassing these nearest neighbours and compute p(x) using Equation (1). This method is known as density estimation through Nearest Neighbours.

Non-Parametric Density Estimation Alternative methods

- ▶ In a small region \mathcal{R} with volume V around location \mathbf{x} , we can assume that probability density of points remains constant. We denote that constant density value by p(x).
- ightharpoonup Probability mass P of region \mathcal{R} is the product of density and volume. That is, P = p(x)V.
- From the previous slide, we can now write $\frac{K}{N} \approx p(x)V$.
- ▶ This yields the following formula for non-parametric density estimation

 $p(x) = \frac{K}{MV}$ (1)

▶ Notice that histogram based density estimation also used the same formula with $K = n_i$ and $V = \Delta_i$.

Machine Learning

Non-Parametric Density Estimation

Non-Parametric Density Estimation Kernel Estimators

- ► Consider a unit hyper-cube around the origin and a point u.
- ▶ We want a function that returns 1 if **u** lies inside the hyper-cube and 0 if it lies outside.
- ▶ This function/kernel can be written as

$$k(\mathbf{u}) = \left\{ \begin{array}{ll} 1, & \text{if } |u_i| \leq \frac{1}{2} \text{ for } i = 1, \dots, D \\ 0, & \text{otherwise} \end{array} \right\}$$

▶ To perform the same operation for a unit hyper-cube centered on a location x, we can use the modified kernel

$$k(\mathbf{u} - \mathbf{x}) = \left\{ \begin{array}{l} 1, & \text{if } |u_i - x_i| \leq \frac{1}{2} \text{ for } i = 1, \dots, D \\ 0, & \text{otherwise} \end{array} \right\}$$

▶ Similarly, to perform the same operation for a hyper-cube with dimension length h centered on a location x, we can use the modified kernel $k(\frac{\mathbf{u}-\mathbf{x}}{h})$.

Nazar Khan Machine Learning Nazar Khan

Non-Parametric Density Estimation

Non-Parametric Density Estimation Kernel Estimators

- ▶ This gives us a way of counting number of data points in a hyper-cube of volume h^D around location x as $K = \sum_{n=1}^{N} k(\frac{\mathbf{u_n} - \mathbf{x}}{h}).$
- Finally, p(x) can be computed using Equation (1) as $p(\mathbf{x}) = \frac{K}{Nh^D}$
- ► This method is also known as the *Parzen window* approach.

Machine Learning

Non-Parametric Density Estimatio

Non-Parametric Density Estimation Nearest Neighbours

- ▶ Here the idea is to fix K and determine volume V from the data.
- ▶ We consider a small hyper-sphere around location x and allow its radius to grow until it contains exactly K data points.
- \triangleright p(x) can then be computed using Equation (1) where V is the volume of the resulting hyper-sphere.

Machine Learning

Non-Parametric Density Estimation Kernel Estimators

- ▶ Use of the hyper-cube with a binary in/out decision leads to artificial, discontinuous estimates for p(x).
- ▶ One alternative is to use a smoother (e.g., Gaussian) kernel function instead.

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{\sqrt{(2\pi h^2)}} \exp\left\{-\frac{||\mathbf{u}_n - \mathbf{x}||^2}{2h^2}\right\}$$

where h plays the role of a smoothing parameter.

Any kernel function satisfying $k(\mathbf{u}) \geq 0$ and $\int k(\mathbf{u}) d\mathbf{u} = 1$ can be used. This will ensure that the resulting density function also satisfies $p(x) \ge 0$ and $\int p(x)dx = 1$.

Machine Learning

Non-Parametric Density Estimati

Non-Parametric Density Estimation Disdvantage of KDE and KNN

- For both kernel estimators and nearest neighbours, p(x) is computed using all N points of the training data.
- ▶ Therefore, training data cannot be discarded.
- \triangleright Evaluation cost of p(x) grows linearly with N.