CS-567 Machine Learning

Nazar Khan

PUCIT

Lectures 20-21 Jan 7, 12 2016

Linear Regression

Linear Regression

- ▶ The simplest regression model is *linear regression*.
- ▶ Linear in parameters w and linear in inputs x.

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x} = w_0 + w_1 x_1 + \dots + w_D x_D$$

- ▶ Parameter w_0 accounts for a fixed offset in the data and is called the *bias* parameter.
- Note that for $\mathbf{x} \in \mathbb{R}^D$, $\mathbf{w} \in \mathbb{R}^{D+1}$.

Linear Regression

Regression

- ► The previous topic, density estimation, was an unsupervised learning problem.
 - ▶ The goal was to model the distribution p(x) of input variables x.
- We now turn to supervised learning where we model the predictive distribution p(t|x).
- ▶ We start by studying the problem of *regression*.
 - Predict continuous target variable(s) t given input variables vector x.
- ▶ Given training data $\{(x_1, t_1), \dots, (x_N, t_N)\}$, learn a function y(x, w) that maps the inputs to the targets.
- ightharpoonup Regression corresponds to finding the optimal parameters \mathbf{w}^* .

Nazar Khan

Machine Learning

Linear Regressi

Linear Regression

- ► Linear models are significantly limited for practical problems especially for high dimensional inputs.
- ► However, they have nice analytical properties and they form the foundation for more sophisticated machine learning approaches.

Linear Regression

► A more powerful model is linear in parameters w but non-linear in inputs x.

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \phi(\mathbf{x}) = w_0 \phi_0(\mathbf{x}) + w_1 \phi_1(\mathbf{x}) + \dots + w_M \phi_M(\mathbf{x})$$

- $ightharpoonup \phi_0(\mathbf{x})$ is usually set to 1 to make w_0 the bias parameter.
- Note that now $\mathbf{w} \in \mathbb{R}^{M+1}$ where M is not necessarily equal to D.
- The input x-space is non-linearly mapped to ϕ -space and learning takes place in this new ϕ -space.
- ▶ While the learning remains linear, the learned mapping is actually non-linear in x-space.

Nazar Khan

Machine Learning

Linear Regression

Linear Regression *Probabilistic perspective*

Likelihood for i.i.d data $\{(x_1, t_1), \dots, (x_N, t_N)\}$ can be written as

$$\prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^T \phi(\mathbf{x}_n), \beta^{-1})$$

► Log-likelihood becomes

$$\frac{N}{2}\ln\beta - \frac{N}{2}\ln(2\pi) - \beta \underbrace{\frac{1}{2}\sum_{n=1}^{N}\{t_n - \mathbf{w}^T\phi(\mathbf{x_n})\}^2}_{SSE}$$

► Therefore, maximisation of log-likelihood with respect to w is equivalent to minimisation of SSE function.

Machine Learning

Linear Regression

Linear Regression *Probabilistic perspective*

- ► We have already covered linear regression in our polynomial fitting example.
- As before, we assume that target t is given by a deterministic function $y(\mathbf{x}, \mathbf{w})$ with additive Gaussian noise. That is

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$

where $\epsilon \sim \mathcal{N}(0, \beta^{-1})$.

► Therefore, we can write

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

Nazar Khan

Machine Learning

Linear Regression

Linear Regression *Probabilistic perspective*

- ▶ Gradient with respect to w is $\sum_{n=1}^{N} \{t_n \mathbf{w}^T \phi(\mathbf{x_n})\} \phi(\mathbf{x_n})^T$.
- ► Equating gradient to the 0 vector

$$\mathbf{0} = \sum_{n=1}^{N} t_n \phi(\mathsf{x_n})^{\mathsf{T}} - \mathsf{w}_\mathsf{ML}^{\mathsf{T}} \left(\sum_{n=1}^{N} \phi(\mathsf{x_n}) \phi(\mathsf{x_n})^{\mathsf{T}}
ight)$$

▶ To convert to a pure matrix-vector notation without summations, let us define the following $N \times M$ matrix

$$\mathbf{\Phi} = \begin{bmatrix} \phi_0(\mathsf{x}_1) & \phi_1(\mathsf{x}_1) & \cdots & \phi_{M-1}(\mathsf{x}_1) \\ \phi_0(\mathsf{x}_2) & \phi_1(\mathsf{x}_2) & \cdots & \phi_{M-1}(\mathsf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathsf{x}_N) & \phi_1(\mathsf{x}_N) & \cdots & \phi_{M-1}(\mathsf{x}_N) \end{bmatrix}$$

known as the design matrix.

Linear Regression

Linear Regression *Probabilistic perspective*

- ▶ It can be verified that the second term in Equation (1) $\sum_{n=1}^{N} \phi(\mathbf{x_n}) \phi(\mathbf{x_n})^T = \Phi^T \Phi. \text{ (H.W. Verify this.)}$
- ▶ By placing the target values in a vector $\mathbf{t} = (t_1, \dots, t_N)^T$ we can also write the first term as $\Phi^T \mathbf{t}$. (H.W. Verify this.)
- \blacktriangleright Now we can solve for \mathbf{w}_{MI} as

$$\mathbf{w}_{\mathsf{ML}} = \underbrace{(\Phi^T \Phi)^{-1} \Phi^T}_{\Phi^\dagger} \mathbf{t}$$
 (this was your answer to Excercise 1.1)

- ▶ The $M \times N$ matrix Φ^{\dagger} is known as the *Moore-Penrose* pseudo-inverse or simply pseudo-inverse of matrix Φ .
- ▶ It is a generalisation of matrix inverse to non-square matrices.
- For a square, invertible matrix Φ , it can be verified that $\Phi^\dagger = \Phi^{-1}$. (H.W. Verify this.)

Nazar Khan

Machine Learning

Linear Regression

Linear Regression *Mutivariate targets*

- For the case of multivariate target vectors $\mathbf{t}_n \in \mathbb{R}^K$, we are interested in the multivariate mapping $\mathbf{y}(\mathbf{x}, \mathbf{W}) = \mathbf{W}^T \Phi(\mathbf{x})$.
- ▶ Column k of the $M \times K$ matrix \mathbf{W} determines the mapping from $\phi(\mathbf{x})$ to the k_{th} output component.
- ► Under isotropic Gaussian noise assumption, we can write the *multivariate* predictive distribution

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t}|\mathbf{y}(\mathbf{x}, \mathbf{w}), \beta^{-1}\mathbf{I}) = \mathcal{N}(\mathbf{t}|\mathbf{W}^T \mathbf{\Phi}(\mathbf{x}), \beta^{-1}\mathbf{I})$$

► The ML solution for i.i.d. data $\{x_n, t_n\}_{n=1}^N$ can then be computed as

$$\mathsf{W}_\mathsf{MI} = \Phi^\dagger \mathsf{T}$$

where
$$\mathbf{T} = \begin{bmatrix} \mathbf{t}_1^T \\ \vdots \\ \mathbf{t}_N^T \end{bmatrix}$$
 is the $N \times K$ matrix of target vectors.

azar Khan Machine Learning

Linear Regression

Linear Regression Regularisation

► MAP estimation using a zero-mean Gaussian prior on w leads to regularised linear regression

$$\mathbf{w}_{\mathsf{ML}} = (\lambda \mathbf{I} + \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$
 (this was your answer to Excercise 1.2)

where λ is the *regularisation coefficient* that controls the trade-off between fitting and regularisation.

- ▶ This is also known as regularised least squares.
- ► Such regularisation is also called *weight decay* or *parameter shrinkage* because it encourages weight/parameter values to remain close to 0.
- ► Regularisation allows more complex models to be trained on small datasets without severe over-fitting.
- \blacktriangleright However, parameter λ needs to be set appropriately.

Nazar Khan Machine Learnin