CS-567 Machine Learning

Nazar Khan

PUCIT

Lectures 5-8 Oct 27, 29 and Nov 3, 5 2015

Gaussian Distribution

- Known as the gueen of distributions.
- Also called the Normal distribution since it models the distribution of almost all natural phenomenon.
- For continuous variables.

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

where μ is the mean, σ^2 is the variance and σ is the standard deviation.

• Reciprocal of variance, $\beta = \frac{1}{\sigma^2}$ is called **precision**.

Gaussian Distribution

Gaussian Distribution

► Multivariate form for *D* − dimensional vector **x** of continuous variables

$$\mathcal{N}(\mathsf{x}|\mu, \mathbf{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\mathbf{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathsf{x} - \mu)^T \mathbf{\Sigma}^{-1}(\mathsf{x} - \mu)\right\}$$

where the $D \times D$ matrix Σ is called the **covariance matrix** and $|\Sigma|$ is its determinant.

Independent and Identically Distributed

- ▶ Let $\mathcal{D} = (x_1, ..., x_N)$ be a set of N random numbers.
- ▶ If value of any x_i does not affect the value of any other x_i , then the x_i s are said to be **independent**.
- If each x_i follows the same distribution, then the x_i s are said to be identically distributed.
- Both properties combined are abbreviated as i.i.d.
- Assuming the x_i s are i.i.d under $\mathcal{N}(\mu, \sigma^2)$

$$p(\mathcal{D}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)$$

▶ This is known as the likelihood function for the Gaussian.

Fitting a Gaussian

- Assuming we have i.i.d data $\mathcal{D} = (x_1, \dots, x_N)$, how can we find the parameters of the Gaussian distribution that generated it?
- ▶ Find the (μ, σ^2) that maximise the likelihood. This is known as the maximum likelihood (ML) approach.
- Since logarithm is a monotonically increasing function, maximising the log is equivalent to maximising the function.
- Logarithm of the Gaussian
 - is a simpler function, and
 - is numerically superior (consider taking product of very small probabilities versus taking the sum of their logarithms).

Log Likelihood

► Log likelihood of Gaussian becomes

$$\ln p(\mathcal{D}|\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

▶ Maximising w.r.t μ , we get

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

▶ Maximising w.r.t σ^2 , we get

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2$$

Bias of Maximum Likelihood

Exercise 1.12

Gaussian Distribution

- ▶ Since $\mathbb{E}\left[\mu_{ML}\right] = \mu$, ML estimates the mean correctly.
- ▶ But since $\mathbb{E}\left[\sigma_{MI}^2\right] = \left(\frac{N-1}{N}\right)\sigma^2$, ML underestimates the variance by a factor $\frac{N-1}{N}$.
- ▶ This phenomenon is called bias and lies at the root of over-fitting.

- Our earlier treatment was via error minimization.
- Now we take a probabilistic perspective.
- ▶ The real goal: make accurate prediction t for new input x given training data (x, t).
- Prediction implies uncertainty. Therefore, target value can be modelled via a probability distribution.
- ▶ We assume that given x, the target variable t has a Gaussian distribution.

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(t - y(x, \mathbf{w}))^2\right\}$$
(1)

- ► Knowns: Training set (x, t).
- ▶ Unknowns: Parameters **w** and β .
- Assuming training data is i.i.d likelihood function becomes

$$p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n,\mathbf{w}),\beta^{-1})$$

Log of likelihood becomes

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{N}{2} \ln \beta^{-1} - \frac{N}{2} \ln(2\pi)$$

Maximization of likelihood w.r.t w is equivalent to minimization of $\frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$.

- ▶ So, assuming $t \sim \mathcal{N}$, ML estimation leads to sum-of-squared errors minimisation.
- **Equivalently**, minimising sum-of-squared errors implies $t \sim \mathcal{N}$ (i.e., noise was normally distributed).

• \mathbf{w}_{ML} and β_{ML} yields a probability distribution over the prediction t.

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}_{ML}, \beta_{ML}) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(\mathbf{x}_n, \mathbf{w}_{ML}), \beta_{ML}^{-1})$$

▶ The polynomial function $y(x, \mathbf{w}_{ML})$ alone only gives a point estimate of t.

Polynomial Curve Fitting Bayesian Perspective

- ML estimation of w maximises the likelihood function $p(\mathbf{t}|\mathbf{x}, \mathbf{w})$ to find the w for which the observed data is most likely.
- ▶ By using a prior $p(\mathbf{w})$, we can employ Bayes' theorem

$$\underbrace{\textit{p(w|x,t)}}_{\text{posterior}} \propto \underbrace{\textit{p(t|x,w)}}_{\text{likelihood}} \underbrace{\textit{p(w)}}_{\text{prior}}$$

- Now maximise the posterior probability $p(\mathbf{w}|\mathbf{x}, \mathbf{t})$ to find the most probable \mathbf{w} given the data (\mathbf{x}, \mathbf{t}) .
- ► This technique is called maximum posterior or MAP.

Polynomial Curve Fitting Bayesian Perspective

▶ Let the prior on parameters w be a zero-mean Gaussian

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2}\right)^{(M+1)/2} \exp\{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}\}$$

Negative logarithm of posterior becomes

$$-\ln p(\mathbf{w}|\mathbf{x},\mathbf{t},\alpha,\beta) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n,\mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w}$$

which is the same as the regularized sum-of-squares error function with $\lambda = \alpha/\beta$.

Polynomial Curve Fitting Bayesian Perspective

- ▶ So, assuming $t \sim \mathcal{N}$ and $\mathbf{w} \sim \mathcal{N}$, MAP estimation leads to regularized sum-of-squared errors minimisation.
- **Equivalently**, minimising regularized sum-of-squared errors implies $t \sim \mathcal{N}$ and $\mathbf{w} \sim \mathcal{N}$ (i.e., noise and the parameters were normally distributed).
- If precision on noise and parameters were α and β respectively, then regularizer $\lambda = \alpha/\beta$.
- \blacktriangleright MAP estimation allows us to determine optimal α and β whereas regularised-SSE minimisation depends on a user-given λ .

Model Selection

- ▶ In our polynomial fitting example, M=3 gave the best generalization by controlling the number of free parameters.
- ▶ Regularization coefficient λ also achieves a similar effect.
- ▶ Parameters such as λ are called **hyperparameters**.
- They determine the model (model's complexity).
- ▶ Model selection involves finding the best values for parameters such as M and λ .

Model Selection

- One approach is to check generalization on a separate validation set.
- Select model that performs best on validation set.
- One standard technique is called cross-validation.
 - Use $\frac{S-1}{S}$ of the available data for training and the rest for validation.
 - ▶ Disadvantage: S times more training for 1 parameter. S^k times more training for k parameters.

Figure: S-fold cross validation for S=4. Every training is evaluated on the validation set (in red) and these validation set perfromance are averaged over the S training runs.

Model Selection

- ► Ideally
 - use only training data,
 - perform only 1 training run for multiple hyperparameters,
 - performance measure that avoids bias due to over-fitting.

Choose model for which

$$\ln p(\mathcal{D}|\mathbf{w}_{ML}) - M$$

is maximized.

- This is called Akaike Information Criterion (AIC).
- ► The best method is the Bayesian approach which penalises model complexity in a natural, principled way.

Curse of Dimensionality

- Our polynomial curve fitting example was for a single variable Χ.
- ▶ When number of variables increases, the number of parameters increases exponentially.

Figure: Curse of Dimensionality: The number of regions of a regular grid grows exponentially with with the dimensionality D of the search space.

Calculus of Variations Calculus of Real Numbers

- Considers real-valued functions f(x): mappings from a real number x to another real number.
- ▶ If f has a minimum in ξ , then ξ necessarily satisfies $f'(\xi) = 0$.
- ▶ If f is strictly convex, then ξ is the unique minimum.

Calculus of Variations Calculus of Variations

- ► Considers real-valued functionals E(u): mappings from a function u(x) to a real number
- ▶ If E is minimised by a function v, then v necessarily satisfies the corresponding Euler-Lagrange equation, a differential equation in v.
- ▶ If *E* is strictly convex, then *v* is the unique minimiser.

Calculus of Variations Euler-Lagrange Equation in 1-D

A smooth function $u(x), x \in [a, b]$ that minimises the functional

$$E(u) = \int_a^b F(x, u, u') dx$$

necessarily satisfies the Euler-Lagrange equation

$$F_u - \frac{d}{dx}F_{u'} = 0$$

with so-called natural boundary conditions

$$F_{u'}=0$$

in x = a and x = b.

Calculus of Variations Euler-Lagrange Equation in 2-D

$$E(u) = \int_{\Omega} F(x, y, u, u_x, u_y) dxdy$$

yields the Euler-Lagrange equation

$$F_u - \frac{d}{dx}F_{u_x} - \frac{d}{dy}F_{u_y} = 0$$

with the natural boundary condition

$$\mathbf{n}^T \left(\begin{array}{c} F_{u_x} \\ F_{u_y} \end{array} \right) = 0$$

on the rectangular boundary $\partial \Omega$ with normal vector **n**. Extensions to higher dimensions are analogous.

Calculus of Variations Euler-Lagrange Equations for Vector-Valued Functions

$$E(u,v) = \int_a^b F(x,u,v,u',v') dx$$

creates a set of Euler-Lagrange equations:

$$F_{u} - \frac{d}{dx}F_{u'} = 0$$
$$F_{v} - \frac{d}{dx}F_{v'} = 0$$

with natural boundary conditions for u and v.

Extensions to vector-valued functions with more components are straightforward.

- Sometimes we need to optimise a function with respect to some constraints.
 - ▶ Minimise f(x) subject to x > 0.
 - ▶ Maximise f(x) subject to g(x) = 0.
- The method of Lagrange Multipliers is an elegant way of optimising functions subject to some constraints.
- ▶ The point x for which $\nabla f(x) = 0$ is called the **stationary** point of f.
- Method of Lagrange multipliers finds the stationary points of a function subject to one or more constraints.

- For a D dimensional vector $\mathbf{x}, g(\mathbf{x}) = 0$ is a D 1 dimensional surface in x-space.
- Let x and $x + \epsilon$ be two nearby points on the surface g(x) = 0.
- Using Taylor's expansion around x

$$g(\mathsf{x} + \epsilon) \approx g(\mathsf{x}) + \epsilon^T \nabla g(\mathsf{x})$$

 $\implies \epsilon^T \nabla g(\mathsf{x}) \approx \mathbf{0}$

- ▶ In the limit $||\epsilon|| \rightarrow 0$
 - $ightharpoonup \epsilon$ becomes parallel to the constraint surface $g(\mathbf{x}) = 0$, and
 - $\mathbf{\epsilon}^T \nabla g(\mathbf{x}) = \mathbf{0}$
- ▶ Therefore, $\nabla g(\mathbf{x})$ must be orthogonal to the surface $g(\mathbf{x}) = 0$.

- ▶ For any surface g(x) = 0, the gradient $\nabla g(x)$ is orthogonal to the surface.
- At any maximiser \mathbf{x}^* of $f(\mathbf{x})$ that also satisfies $g(\mathbf{x}) = 0$, $\nabla f(\mathbf{x})$ must also be orthogonal to the surface $g(\mathbf{x}) = 0$.
 - ▶ If $\nabla f(\mathbf{x})$ is orthogonal to $g(\mathbf{x}) = 0$ at \mathbf{x}^* , then any movement around \mathbf{x}^* along surface $g(\mathbf{x}) = 0$ is orthogonal to $\nabla f(\mathbf{x})$ and will not increase the value of f.
 - ► The only way to increase value of f at \mathbf{x}^* is to leave the constraint surface $g(\mathbf{x}) = 0$.

- ▶ So, at any maximiser \mathbf{x}^* , ∇f and ∇g are parallel (or anti-parallel) vectors.
- This can be stated mathematically as

$$\nabla f + \lambda \nabla g = 0$$

where $\lambda \neq 0$ is the so-called **Lagrange multiplier**.

 This can also be formulated as maximisation of the so-called Lagrangian function

$$L(\mathbf{x},\lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

with respect to x and λ .

▶ Note that this maximisation is unconstrained.

At maximiser x*

$$0 \equiv \nabla L = \nabla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x})$$

which gives D+1 equations that the optimal \mathbf{x}^* and λ^* must satisfy

$$\frac{\partial L}{\partial x_1} = 0$$

$$\vdots$$

$$\frac{\partial L}{\partial x_D} = 0$$

$$\frac{\partial L}{\partial \lambda} = 0$$

If only x^* is required then λ can be eliminated without determining its value (hence λ is also called an **undetermined multiplier**.)

Lagrange Multipliers Example

Maximise $1 - x_1^2 - x_2^2$ subject to the constraint $x_1 + x_2 = 1$.