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Gaussian Distribution Model Selection Curse of Dimensionality Calculus of Variations Lagrange Multipliers

Gaussian Distribution

I Known as the queen of distributions.
I Also called the Normal distribution since it models the

distribution of almost all natural phenomenon.
I For continuous variables.

N (x |µ, σ2) =
1√
2πσ2

exp
{
− 1
2σ2 (x − µ)2

}
where µ is the mean, σ2 is the variance and σ is the
standard deviation.

I Reciprocal of variance, β = 1
σ2 is called precision.
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Gaussian Distribution

I Multivariate form for D − dimensional vector x of continuous
variables

N (x|µ,Σ) =
1√

(2π)D |Σ|
exp
{
−1
2

(x− µ)TΣ−1(x− µ)

}
where the D × D matrix Σ is called the covariance matrix
and |Σ| is its determinant.
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Independent and Identically Distributed

I Let D = (x1, . . . , xN) be a set of N random numbers.
I If value of any xi does not affect the value of any other xj ,

then the xi s are said to be independent.
I If each xi follows the same distribution, then the xi s are said

to be identically distributed.
I Both properties combined are abbreviated as i.i.d.
I Assuming the xi s are i.i.d under N (µ, σ2)

p(D|µ, σ2) =
N∏

n=1

N (xn|µ, σ2)

I This is known as the likelihood function for the Gaussian.
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Fitting a Gaussian

I Assuming we have i.i.d data D = (x1, . . . , xN), how can we
find the parameters of the Gaussian distribution that generated
it?

I Find the (µ, σ2) that maximise the likelihood. This is
known as the maximum likelihood (ML) approach.

I Since logarithm is a monotonically increasing function,
maximising the log is equivalent to maximising the function.

I Logarithm of the Gaussian
I is a simpler function, and
I is numerically superior (consider taking product of very small

probabilities versus taking the sum of their logarithms).
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Log Likelihood

I Log likelihood of Gaussian becomes

ln p(D|µ, σ2) = − 1
2σ2

N∑
n=1

(x − µ)2 − N

2
lnσ2 − N

2
ln(2π)

I Maximising w.r.t µ, we get

µML =
1
N

N∑
n=1

xn

I Maximising w.r.t σ2, we get

σ2
ML =

1
N

N∑
n=1

(xn − µML)2
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Bias of Maximum Likelihood

I Exercise 1.12
I Since E [µML] = µ, ML estimates the mean correctly.
I But since E

[
σ2
ML

]
=
(
N−1
N

)
σ2,

ML underestimates the variance by a factor N−1
N .

I This phenomenon is called bias and lies at the root of
over-fitting.
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Polynomial Curve Fitting
A Probabilistic Perspective

I Our earlier treatment was via error minimization.
I Now we take a probabilistic perspective.
I The real goal: make accurate prediction t for new input x

given training data (x, t).
I Prediction implies uncertainty. Therefore, target value can be

modelled via a probability distribution.
I We assume that given x , the target variable t has a Gaussian

distribution.

p(t|x ,w, β) = N (t|y(x ,w), β−1) (1)

=
1√
2πσ2

exp
{
− 1
2σ2 (t − y(x ,w))2

}
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Polynomial Curve Fitting
A Probabilistic Perspective

I Knowns: Training set (x, t).
I Unknowns: Parameters w and β.
I Assuming training data is i.i.d likelihood function becomes

p(t|x,w, β) =
N∏

n=1

N (tn|y(xn,w), β−1)

I Log of likelihood becomes

ln p(t|x,w, β) = −β
2

N∑
n=1

{y(xn,w)−tn}2+
N

2
lnβ−1−N

2
ln(2π)

I Maximization of likelihood w.r.t w is equivalent to
minimization of 1

2
∑N

n=1{y(xn,w)− tn}2.
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Polynomial Curve Fitting
A Probabilistic Perspective

I So, assuming t ∼ N , ML estimation leads to sum-of-squared
errors minimisation.

I Equivalently, minimising sum-of-squared errors implies t ∼ N
(i.e., noise was normally distributed).
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Polynomial Curve Fitting
A Probabilistic Perspective

I wML and βML yields a probability distribution over the
prediction t.

p(t|x,wML, βML) =
N∏

n=1

N (tn|y(xn,wML), β−1
ML)

I The polynomial function y(x ,wML) alone only gives a point
estimate of t.

Nazar Khan Machine Learning



Gaussian Distribution Model Selection Curse of Dimensionality Calculus of Variations Lagrange Multipliers

Polynomial Curve Fitting
Bayesian Perspective

I ML estimation of w maximises the likelihood function p(t|x,w)
to find the w for which the observed data is most likely.

I By using a prior p(w), we can employ Bayes’ theorem

p(w|x, t)︸ ︷︷ ︸
posterior

∝ p(t|x,w)︸ ︷︷ ︸
likelihood

p(w)︸ ︷︷ ︸
prior

I Now maximise the posterior probability p(w|x, t) to find the
most probable w given the data (x, t).

I This technique is called maximum posterior or MAP.
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Polynomial Curve Fitting
Bayesian Perspective

I Let the prior on parameters w be a zero-mean Gaussian

p(w|α) = N (w|0, α−1I) =
(α
2

)(M+1)/2
exp{−α

2
wTw}

I Negative logarithm of posterior becomes

− ln p(w|x, t, α, β) =
β

2

N∑
n=1

{y(xn,w)− tn}2 +
α

2
wTw

which is the same as the regularized sum-of-squares error
function with λ = α/β.
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Polynomial Curve Fitting
Bayesian Perspective

I So, assuming t ∼ N and w ∼ N , MAP estimation leads to
regularized sum-of-squared errors minimisation.

I Equivalently, minimising regularized sum-of-squared errors
implies t ∼ N and w ∼ N (i.e., noise and the parameters
were normally distributed).

I If precision on noise and parameters were α and β respectively,
then regularizer λ = α/β.

I MAP estimation allows us to determine optimal α and β
whereas regularised-SSE minimisation depends on a user-given
λ.
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Model Selection

I In our polynomial fitting example, M = 3 gave the best
generalization by controlling the number of free parameters.

I Regularization coefficient λ also achieves a similar effect.
I Parameters such as λ are called hyperparameters.
I They determine the model (model’s complexity).
I Model selection involves finding the best values for parameters

such as M and λ.
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Model Selection

I One approach is to check generalization on a separate
validation set.

I Select model that performs best on validation set.
I One standard technique is called cross-validation.

I Use S−1
S of the available data for training and the rest for

validation.
I Disadvantage: S times more training for 1 parameter. Sk

times more training for k parameters.

Figure: S-fold cross validation for S = 4. Every training is evaluated on
the validation set (in red) and these validation set perfromance are
averaged over the S training runs.
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Model Selection

I Ideally
I use only training data,
I perform only 1 training run for multiple hyperparameters,
I performance measure that avoids bias due to over-fitting.
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Model Selection

I Choose model for which

ln p(D|wML)−M

is maximized.
I This is called Akaike Information Criterion (AIC).
I The best method is the Bayesian approach which

penalises model complexity in a natural, principled way.
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Curse of Dimensionality

I Our polynomial curve fitting example was for a single variable
x .

I When number of variables increases, the number of parameters
increases exponentially.

Figure: Curse of Dimensionality: The number of regions of a regular grid
grows exponentially with with the dimensionality D of the search space.
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Calculus of Variations
Calculus of Real Numbers

I Considers real-valued functions f (x): mappings from a real
number x to another real number.

I If f has a minimum in ξ, then ξ necessarily satisfies f ′(ξ) = 0.
I If f is strictly convex, then ξ is the unique minimum.
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Calculus of Variations
Calculus of Variations

I Considers real-valued functionals E (u): mappings from a
function u(x) to a real number

I If E is minimised by a function v , then v necessarily satisfies
the corresponding Euler-Lagrange equation, a differential
equation in v .

I If E is strictly convex, then v is the unique minimiser.
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Calculus of Variations
Euler-Lagrange Equation in 1-D

A smooth function u(x), x ∈ [a, b] that minimises the functional

E (u) =

∫ b

a
F (x , u, u′)dx

necessarily satisfies the Euler-Lagrange equation

Fu −
d

dx
Fu′ = 0

with so-called natural boundary conditions

Fu′ = 0

in x = a and x = b.
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Calculus of Variations
Euler-Lagrange Equation in 2-D

E (u) =

∫
Ω
F (x , y , u, ux , uy )dxdy

yields the Euler-Lagrange equation

Fu −
d

dx
Fux −

d

dy
Fuy = 0

with the natural boundary condition

nT

(
Fux
Fuy

)
= 0

on the rectangular boundary ∂Ω with normal vector n.
Extensions to higher dimensions are analogous.
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Calculus of Variations
Euler-Lagrange Equations for Vector-Valued Functions

E (u, v) =

∫ b

a
F (x , u, v , u′, v ′)dx

creates a set of Euler-Lagrange equations:

Fu −
d

dx
Fu′ = 0

Fv −
d

dx
Fv ′ = 0

with natural boundary conditions for u and v .
Extensions to vector-valued functions with more components are
straightforward.
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Lagrange Multipliers

I Sometimes we need to optimise a function with respect to
some constraints.

I Minimise f (x) subject to x > 0.
I Maximise f (x) subject to g(x) = 0.

I The method of Lagrange Multipliers is an elegant way of
optimising functions subject to some constraints.

I The point x for which ∇f (x) = 0 is called the stationary
point of f .

I Method of Lagrange multipliers finds the stationary points of a
function subject to one or more constraints.
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Lagrange Multipliers

I For a D dimensional vector x, g(x) = 0 is a D − 1 dimensional
surface in x-space.

I Let x and x + ε be two nearby points on the surface g(x) = 0.
I Using Taylor’s expansion around x

g(x + ε) ≈ g(x) + εT∇g(x)

=⇒ εT∇g(x) ≈ 0

I In the limit ||ε|| → 0
I ε becomes parallel to the constraint surface g(x) = 0, and
I εT∇g(x) = 0

I Therefore, ∇g(x) must be orthogonal to the surface g(x) = 0.
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Lagrange Multipliers

I For any surface g(x) = 0, the gradient ∇g(x) is orthogonal to
the surface.

I At any maximiser x∗ of f (x) that also satisfies g(x) = 0,
∇f (x) must also be orthogonal to the surface g(x) = 0.

I If ∇f (x) is orthogonal to g(x) = 0 at x∗, then any movement
around x∗ along surface g(x) = 0 is orthogonal to ∇f (x) and
will not increase the value of f .

I The only way to increase value of f at x∗ is to leave the
constraint surface g(x) = 0.
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Lagrange Multipliers

I So, at any maximiser x∗, ∇f and ∇g are parallel (or
anti-parallel) vectors.

I This can be stated mathematically as

∇f + λ∇g = 0

where λ 6= 0 is the so-called Lagrange multiplier.
I This can also be formulated as maximisation of the so-called

Lagrangian function

L(x, λ) = f (x) + λg(x)

with respect to x and λ.
I Note that this maximisation is unconstrained.
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Lagrange Multipliers

At maximiser x∗

0 ≡ ∇L = ∇f (x) + λ∇g(x)

which gives D + 1 equations that the optimal x∗ and λ∗ must
satisfy

∂L

∂x1
= 0

...
∂L

∂xD
= 0

∂L

∂λ
= 0

If only x∗ is required then λ can be eliminated without determining
its value (hence λ is also called an undetermined multiplier.)
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Lagrange Multipliers
Example

Maximise 1− x2
1 − x2

2 subject to the constraint x1 + x2 = 1.
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