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Decision Theory Information Theory

Decision Theory

I Probability Theory: Mathematical framework for quantifying
uncertainty.

I Decision Theory: Combines with probability theory to make
optimal decisions in uncertain scenarios.

I Inference: Determining p(x , t) from training data.
I Decision: Find a particular t.
I p(x , t) is the most complete description of the data.

I But a decision still needs to be made.
I This decision is generally very simple after inference.
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Decision Theory
Example

I Given X-ray image x, we want to know if the patient has a
certain disease or not.

I Let t = 0 correspond to the disease class, denoted by C1.
I Let t = 1 correspond to the non-disease class, denoted by C2.
I Using Bayes’ theorem

p(Ck |x) =
p(x|Ck)p(Ck)

p(x)

I All quantities can be obtained from p(x, t) either via
marginalization or conditioning.

I Intuitivley, to minimise chance of error, assign x to class with
highest posterior.
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Decision Theory

I Any decision rule places inputs x into decision regions.
I If my decision rule places x in region R1, I will say that x

belongs to class C1.
I The probability of x belonging to class C1 is p(x, C1). This is

the probability of my decision being correct.
I Similarly, the probability of my decision being incorrect is

p(x, C2).
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Decision Theory

I When one input x has been decided upon

p(mistake on x) = p(x placed in region 1 and belongs to class 2
OR

x placed in region 2 and belongs to class 1)
= p(x ∈ R1, C2) + p(x ∈ R2, C1)

I When all inputs have been decided upon

p(mistake) =
∫
R1

p(x, C2)dx+
∫
R2

p(x, C1)dx
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Decision Theory

I p(mistake on x) is minimized when x is placed in the region
Rk with the highest p(x, Ck).

I Overall p(mistake) is minimized when each x is placed in the
region Rk with the highest p(x, Ck).

I Highest p(x, Ck) =⇒ highest p(Ck |x)p(x) =⇒ highest
p(Ck |x).

I For K classes also, p(mistake) is minimised by placing each x
in the region Rk with highest posterior p(Ck |x). This is known
as the Bayesian decision rule.
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Decision Theory
Loss

I Suppose we are classifying plant leaves as poisonous or not.
I Are the following mistakes equal?

I Poisonous leaf classified as non-poisonous.
I Non-poisonous leaf classified as poisonous.

I We can assign a loss value to each mistake.


Classified as
poisonous non-poisonous

poisonous 0 1000
non-poisonous 1 0


I Lkj is the loss incurred by classifying a class k item as class j .
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Decision Theory
Loss

I When mistakes are not equally bad, instead of minimising the
number of mistakes, it is better to minimize the expected
loss.

E[L] =
∑
k

∑
j

Lkjp(Lkj)

=
∑
k

∑
j

Lkj

∫
Rj

p(x, Ck)dx

I To minimise overall expected loss, place each x in the region j
for which expected loss E[Lj ] is minimum

E[Lj ] =
∑
k

Lkjp(Ck |x)

is minimum.
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Decision Theory
Reject Option

I Classification error is high when p(x, Ck) (or equivalently
p(Ck |x)) is comparable for all k .

I Uncertainty because no class is a clear winner.
I Reject option: Avoid making a decision on uncertain

scenarios.
I Do not make a decision for x for which largest p(Ck |x) ≤ θ.
I Loss matrix can include loss of reject option too.


Classified as
poisonous non-poisonous reject

poisonous 0 1000 100
non-poisonous 1 0 200


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3 Approaches for Solving Decision Problems

1. Generative: Infer posterior p(Ck |x)
I either by inferring p(x|Ck) and p(x) and using Bayes’ theorem,
I or by inferring p(x, Ck) and marginalizing.
I Called generative because p(x|Ck) and/or p(x, Ck) allow us to

generate new x’s.
2. Discriminative: Model the posterior p(Ck |x) directly.

I If decision depends on posterior, then no need to model the
joint distribution.

3. Discriminant Function: Just learn a discriminant function
that maps x directly to a class label.

I f(x)=0 for class C1.
I f(x)=1 for class C2.
I No probabilities
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Generative Approach

I For high dimensional x, estimating p(x|Ck) requires large
training set.

I p(x) allows outlier detection. Also called novelty detection.
I Estimating p(Ck) is easy – just use fraction of training data for

each class.
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Discriminant Functions

I Directly learn the decision boundaries.
I But now we don’t have the posterior probabilities.
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Benefits of knowing the posteriors p(Ck |x)

I If loss matrix changes, decision rule can be trivially revised.
Discriminant functions would require retraining.

I Reject option can be used.
I Different models can be combined systematically.
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Combining Models

Let’s say we have X-ray images xI and blood-tests xB and want to
classify into disease or not disease.

I Method 1: Form x =

[
xI
xB

]
and learn classifier for x.

I Method 2: Learn p(Ck |xI ) and p(Ck |xB).
I Assuming conditional independence

p(xI , xB |Ck) = p(xI |Ck)p(xB |Ck)

p(Ck |xI , xB) ∝ p(xI , xB |Ck)p(Ck)
∝ p(xI |Ck)p(xB |Ck)p(Ck)

∝ p(Ck |xI )p(Ck |xB)
p(Ck)

I Normalise r.h.s using
∑

k p(Ck |xI , xB).
I The conditional independence assumption is also known as the

naive Bayes model.
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Loss functions for regression

I So far we have used decision theory for classification problems.
I Loss functions can also be defined for regression problems.
I For example, for the polynomial fitting problem a loss function

can be described as L(t, y(x)) = (y(x)− t)2.
I Expected loss can be written as

E [L] =

∫ ∫
(y(x)− t)2p(x, t)dxdt

I The minimising polynomial function can be written using
calculus of variations as

y(x) =
∫
tp(x, t)dt
p(x)

=

∫
tp(t|x)dt = Et [t|x]

which is the expected value of t given x. Also called the
regression function.

I For multivariable outputs t, optimal y(x) = Et[t|x]
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3 Approaches for Solving Regression Problems

I Similar to the case of classification problems, there are 3
approaches to solve regression problems.

1. Infer p(x, t), marginalize to get p(x), normalize to get p(t|x)
and use it to compute conditional expectation Et [t|x].

2. Infer p(t|x) directly and use it to compute conditional
expectation Et [t|x].

3. Find regression function y(x) directly.
I The relative merits of each approach are similar to those of

clasification approaches.
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Information Theory

I Amount of additional information ∝ degree of surprise.
I If a highly unlikely event occurs, you gain a lot of new

information.
I If an almost certain event occurs, you gain not much new

information.
I So information ∝ 1

probability
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Information Theory

I For unrelated events x and y
I Information from both events should equal information from x

plus information from y .
I p(x , y) = p(x)p(y)

I From these two relationships, it can be shown that information
must be given by the logarithm function.

h(x , y) = − log(p(x , y))
= − log(p(x)p(y))
= − log(p(x))− log(p(y))

h(x) = − log(p(x))

where h(x) denotes the information given by x .
I For base 2 log, units of information h(x) are ’bits’.
I For natural log, units of information h(x) are ’nats’ (1

nat= ln 2 bits).
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Information Theory
Entropy

I If information given by random variable x is given by a function
h(x) = − log(p(x)), then expected information from r.v x is

H[x ] = E [h(x)] = −
∑

log(p(x))p(x)

I Also called the entropy of random variable x .
I Entropy is just a fancy name for expected information

contained in a random variable.
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Information Theory
Entropy

I To transmit a r.v x with 8 equally likely states, we need 3 bits
(= log2 8).

I Entropy H[x ] = −
∑ 1

8 log2
1
8 = 3 bits.

I For non-uniform probabilities, entropy is reduced.
I Entropy quantifies order/disorder.
I Entropy is a lower-bound on the number of bits needed to

transmit the state of a random variable.
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Information Theory
Entropy

I For a discrete r.v X with pdf p, entropy is

H[p] = −
∑
i

p(xi ) ln p(xi ) (1)

I Sharply peaked distribution =⇒ low entropy.
I Evenly spread distribution =⇒ high entropy.
I Is the entropy non-negative?
I What is its minimum value?
I When does the minimum value occur?
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Information Theory
Finding the Maximum Entropy Distribution – Discrete Case

I How can we find the discrete distribution p(x) that maximises
the entropy H[p]?

I Since p must add up to 1, this a constrained maximisation
problem.

I The Lagrangian function is

H̃ = −
∑
i

p(xi ) ln p(xi ) + λ

(∑
i

p(xi )− 1

)

I The maximum is given by the stationary point of H̃.
I Why is it the maximum?
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Information Theory
Entropy

I For a continuous r.v X with pdf p, we define differential
entropy as

H[p] = −
∫

p(x) ln p(x)dx

I For multivariate x

H[p] = −
∫

p(x) ln p(x)dx
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Information Theory
Finding the Maximum Entropy Distribution – Discrete Case

I How can we find the continuous distribution p(x) that
maximises the entropy H[p]?

I The maximum entropy discrete distribution was the uniform
distribution.

I The maximum differential entropy continuous distribution is
the Gaussian distribution (Excercise 1.34 in Bishop’s book).
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Information Theory
Entropy

I Differential entropy of the Gaussian is

H[x ] =
1
2
{1+ ln(2πσ2)}

I Proportional to σ2. Entropy increases as more values become
probable.

I Can also be negative (for σ2 < 1
2πe ).
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Information Theory
Conditional Entropy

I Let p(x, y) be a joint distribution.
I Given x, additional information needed to specify y is the

conditional information − ln(p(y|x)).
I So expected conditional information is

H[y|x] =
∫ ∫

p(y, x) ln p(y|x)dyx

I Also called the conditional entropy of y given x.
I Satisfies H[x, y] = H[y|x] + H[x]. Information needed to

specify x and y equals information for x alone plus additional
information needed to specify y given x.
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Information Theory
Relative entropy

I Let r.v. x have a true distribution p(x) and let our estimate of
this distribution be q(x).

I Average information required to specify x when its information
content is determined using p(x) is given by the entropy

H[p] = −
∫

p(x) ln p(x) (2)

I Average information required to specify x when its information
content is determined using q(x) is given by

H̃[q] = −
∫

p(x) ln q(x) (3)
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Information Theory
Relative entropy

I Average additional information required to specify x when q(x)
is used instead of p(x) is given by
H̃[q]− H[p] =

(
−
∫
p(x) ln q(x)

)
−
(
−
∫
p(x) ln p(x)

)
.

I This is known as the relative entropy, or Kullback-Leibler
(KL) divergence.

KL(p||q) =
(
−
∫

p(x) ln q(x)
)
dx−

(
−
∫

p(x) ln p(x)
)
dx

= −
∫

p(x) ln
{
q(x)
p(x)

}
dx

I KL(p||q) 6= KL(q||p).
I KL(p||q) ≥ 0 with equality for p = q.
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Convex Functions

I A function f (x) is convex if every chord lies on or above the
function.

I Any value of x in the interval a to b can be parameterised as
λa+ (1− λ)b where 0 ≤ λ ≤ 1.

I The corresponding point on the chord can be parameterised as
λf (a) + (1− λ)f (b).

I The corresponding point on the function can be parameterised
as f (λa+ (1− λ)b).
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Convex Functions

I Convexity implies points on chord lie on or above points on
function. That is

f (λa+ (1− λ)b) ≤ λf (a) + (1− λ)f (b)

I Convexity is equivalent to positive second derivative
everywhere.

I If function and chord are equal only for λ = 0 and λ = 1, then
the function is called strictly convex.

I The inverse property (every chord lies on or below the
function) is called concavity.

I If f (x) is convex, then −f (x) will be concave.
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Jensen’s Inequality

I Every convex function f (x) satisfies the so-called Jensen’s
inequality

f

(
M∑
i=1

λixi

)
≤

M∑
i=1

λi f (xi )

where λi ≥ 0 and
∑M

i=1 λi = 1 for any set of points
(x1, . . . , xM).

I Interpreting the λi as probabilities p(xi ), Jensen’s inequality
can be formulated for discrete random variables as

f (E[x ]) ≤ E[f (x)]

I For continuous random variables, Jensen’s inequality becomes

f

(∫
xp(xdx

)
≤
∫

f (x) p(xdx
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KL-divergence

I Using Jensen’s inequality

KL(p||q) = −
∫

p(x) ln
{
q(x)
p(x)

}
︸ ︷︷ ︸

concave

dx ≥ − ln
∫

q(x)dx︸ ︷︷ ︸
=1︸ ︷︷ ︸

=0

where the equality holds only when p(x) = q(x) ∀x (because
− ln x is strictly convex).

I Since KL(p||q) ≥ 0 and KL(p||p) = 0, KL-divergence can be
interpreted as a measure of dissimilarity between
distributions p(x) and q(x).
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Relation between data compression and density estimation

I Optimal compression requires the true density.
I For estimated density, KL-divergence gives average,
additional information required by transmitting via
estimated density instead of true density.
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Density Estimation via KL-divergence

I Suppose we have finite data points x1, . . . , xN drawn from an
unknown distribution p(x).

I We want to approximate p(x) by some parametric distribution
q(x|θ).

I We can do this by finding θ that minimizes KL(p||q). But p
is unknown.

I However, KL(p||q) is an expectation w.r.t p(x) and can be
approximated by the ordinary average for large N (law of large
numbers). So

KL(p||q) = −
∫

p(x) ln
{
q(x|θ)
p(x)

}
dx (4)

≈ 1
N

N∑
n=1

{− ln q(xn|θ) + ln p(x)}
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Density Estimation via KL-divergence

I Minimizing w.r.t θ is equivalent to minimizing∑N
n=1− ln q(xn|θ) which is the negative log-likelihood of

data under q(x|θ).
I So minimizing KL-divergence is equivalent to maximising

likelihood (ML estimation).
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Mutual Information

I Given 2 random variables x and y, can we find how
independent they are?

I If they are independent then p(x, y) = p(x)p(y). So
KL(p(x, y)||p(x)p(y)) = 0.

I Therefore, KL(p(x, y)||p(x)p(y)) is a measure of how
independent x and y are.

I Also called the mutual information I [x, y] between variables
x and y.

I [x, y] = KL(p(x, y)||p(x)p(y)) (5)

= −
∫ ∫

p(x, y) ln
(
p(x)p(y)
p(x, y)

)
dxdy

I I [x, y] ≥ 0 with equality iff x and y are independent.
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Mutual Information

I Using the sum and product rules

I [x, y] = H[x]︸︷︷︸
avg. info. needed

to transmit x

− H[x|y]︸ ︷︷ ︸
avg. info. needed

to transmit x
knowing state of y

= H[y]︸︷︷︸
avg. info. needed

to transmit y

− H[y|x]︸ ︷︷ ︸
avg. info. needed

to transmit y
knowing state of x

I Mutual information captures
I Information about x that is contained in y.
I Information about y that is contained in x.
I Reduction in uncertainty of one variable when the other is

known.
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