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Decision Theory

Decision Theory

» Probability Theory: Mathematical framework for quantifying
uncertainty.

» Decision Theory: Combines with probability theory to make
optimal decisions in uncertain scenarios.

» Inference: Determining p(x, t) from training data.

» Decision: Find a particular t.
> p(x, t) is the most complete description of the data.

» But a decision still needs to be made.
» This decision is generally very simple after inference.
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Decision Theory

Decision Theory

Example

Given X-ray image x, we want to know if the patient has a
certain disease or not.

Let t = 0 correspond to the disease class, denoted by C;.
Let t = 1 correspond to the non-disease class, denoted by Cs.

Using Bayes' theorem

p(x|Ck)p(Ck)

PG = =00

All quantities can be obtained from p(x, t) either via
marginalization or conditioning.

Intuitivley, to minimise chance of error, assign x to class with
highest posterior.
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Decision Theory

Decision Theory

» Any decision rule places inputs x into decision regions.

» If my decision rule places x in region R1, | will say that x
belongs to class Cs.

» The probability of x belonging to class C; is p(x,C1). This is
the probability of my decision being correct.

» Similarly, the probability of my decision being incorrect is
p(X7 C2)
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Decision Theory

Decision Theory

» When one input x has been decided upon

p(mistake on x) = p(x placed in region 1 and belongs to class 2
OR
x placed in region 2 and belongs to class 1)
= p(x € R1,C2) + p(x € R2,Cq)

» When all inputs have been decided upon

p(mistake) = /

p(X,CQ)dX+/ p(X,Cl)dX
R1

Ra2
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Decision Theory

Decision Theory

» p(mistake on x) is minimized when x is placed in the region
R with the highest p(x, Cy).

» Overall p(mistake) is minimized when each x is placed in the
region Ry with the highest p(x, Cy).

» Highest p(x,Cx) = highest p(Cx|x)p(x) = highest
p(Ck|X).

» For K classes also, p(mistake) is minimised by placing each x

in the region Ry with highest posterior p(Ck|x). This is known
as the Bayesian decision rule.
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Decision Theory

Decision Theory
Loss

» Suppose we are classifying plant leaves as poisonous or not.

» Are the following mistakes equal?

» Poisonous leaf classified as non-poisonous.
» Non-poisonous leaf classified as poisonous.

» We can assign a loss value to each mistake.

Classified as
poisonous  non-poisonous
poisonous 0 1000
non-poisonous 1 0

> Ly is the loss incurred by classifying a class k item as class ;.
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Decision Theory

Decision Theory
Loss

» When mistakes are not equally bad, instead of minimising the
number of mistakes, it is better to minimize the expected

loss.
E[L] =Y > Lip(Ly)
ko

_ZZLk,/ (x, Ci)dx

> To minimise overall expected loss, place each x in the region j
for which expected loss E[L;] is minimum

E[Lj] = Lijp(Cilx)
k

is minimum.
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Decision Theory

Decision Theory
Reject Option

» Classification error is high when p(x,Cx) (or equivalently
p(Ck|x)) is comparable for all k.

» Uncertainty because no class is a clear winner.

» Reject option: Avoid making a decision on uncertain
scenarios.

» Do not make a decision for x for which largest p(Cx|x) < 6.

» Loss matrix can include loss of reject option too.

Classified as

poisonous  non-poisonous reject
poisonous 0 1000 100
non-poisonous 1 0 200
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Decision Theory

3 Approaches for Solving Decision Problems

1. Generative: Infer posterior p(Ck|x)
» either by inferring p(x|Cx) and p(x) and using Bayes' theorem,
» or by inferring p(x,Cx) and marginalizing.
» Called generative because p(x|Cx) and/or p(x,Cx) allow us to
generate new x's.

2. Discriminative: Model the posterior p(Cx|x) directly.
» |If decision depends on posterior, then no need to model the
joint distribution.
3. Discriminant Function: Just learn a discriminant function
that maps x directly to a class label.

» f(x)=0 for class C;.
» f(x)=1 for class Cs.
> No probabilities
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Decision Theory

Generative Approach

» For high dimensional x, estimating p(x|Cx) requires large
training set.

» p(x) allows outlier detection. Also called novelty detection.

» Estimating p(Cx) is easy — just use fraction of training data for
each class.
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Decision Theory

Discriminant Functions

» Directly learn the decision boundaries.

» But now we don't have the posterior probabilities.
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Decision Theory

Benefits of knowing the posteriors p(Ck|x)

» |If loss matrix changes, decision rule can be trivially revised.
Discriminant functions would require retraining.

> Reject option can be used.

» Different models can be combined systematically.
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Decision Theory

Combining Models

Let's say we have X-ray images x; and blood-tests xg and want to
classify into disease or not disease.

» Method 1: Form x = [ :l ] and learn classifier for x.
B

» Method 2: Learn p(Ck|x;) and p(Ck|xg).
» Assuming conditional independence
p(xi,xg|Ck) = p(x1|Ck)P(x5|Ck)

P(Ck|x1,xg) o< p(x1,xg|Ci)P(Ck)
o p(x|Cx)p(x5|Ci)P(Ck)
o PChlx1)p(Crlxe)
p(Ck)
» Normalise r.h.s using >, p(Ck|x/,xg).

» The conditional independence assumption is also known as the
naive Bayes model.
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Decision Theory

Loss functions for regression

» So far we have used decision theory for classification problems.

» Loss functions can also be defined for regression problems.

» For example, for the polynomial fitting problem a loss function
can be described as L(t, y(x)) = (y(x) — t)2.

» Expected loss can be written as

£l = [ [0 - 02p(x, )t

» The minimising polynomial function can be written using
calculus of variations as

_ W :/tp(t\x)dt = Eq[t[x]

which is the expected value of t given x. Also called the
regression function.

y(x)

» For multivariable outputs t, optimal y(x) = E[t|x]
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Decision Theory

3 Approaches for Solving Regression Problems

» Similar to the case of classification problems, there are 3
approaches to solve regression problems.
1. Infer p(x, t), marginalize to get p(x), normalize to get p(t|x)
and use it to compute conditional expectation E;[t|x].
2. Infer p(t|x) directly and use it to compute conditional
expectation E;[t|x].
3. Find regression function y(x) directly.

» The relative merits of each approach are similar to those of
clasification approaches.
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Information Theory

Information Theory

» Amount of additional information oc degree of surprise.

» If a highly unlikely event occurs, you gain a lot of new
information.

» If an almost certain event occurs, you gain not much new
information.

» So information robabilty
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Information Theory

Information Theory

» For unrelated events x and y
» Information from both events should equal information from x
plus information from y.

> p(x,y) = p(x)p(y)
» From these two relationships, it can be shown that information
must be given by the logarithm function.

h(x,y) = —log(p(x, y))
— log(p(x)p(y))
= —log(p(x)) — log(p(¥))
h(x) = —log(p(x))
where h(x) denotes the information given by x.

» For base 2 log, units of information h(x) are 'bits’.

» For natural log, units of information h(x) are 'nats’ (1
nat= In 2 bits).
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Information Theory

Information Theory
Entropy

» |f information given by random variable x is given by a function
h(x) = —log(p(x)), then expected information from r.v x is

Hx] = E[h(x)] = =) _log(p

» Also called the entropy of random variable x.

» Entropy is just a fancy name for expected information
contained in a random variable.
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Information Theory

Information Theory
Entropy

v

To transmit a r.v x with 8 equally likely states, we need 3 bits
(= log, 8).

Entropy H[x] = — > § log, § = 3 bits.

For non-uniform probabilities, entropy is reduced.

v

v

v

Entropy quantifies order/disorder.

v

Entropy is a lower-bound on the number of bits needed to
transmit the state of a random variable.
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Information Theory

Information Theory
Entropy

» For a discrete r.v X with pdf p, entropy is

Hlpl = = > p(q) In p(x;) (1)

v

Sharply peaked distribution = low entropy.

v

Evenly spread distribution = high entropy.

v

Is the entropy non-negative?

What is its minimum value?

v

When does the minimum value occur?

v
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Information Theory

Information Theory
Finding the Maximum Entropy Distribution — Discrete Case

How can we find the discrete distribution p(x) that maximises
the entropy H[p]?

Since p must add up to 1, this a constrained maximisation
problem.

The Lagrangian function is

A== p(x)Inp(x)+ A (Z p(xi) — 1)

1

The maximum is given by the stationary point of H.

Why is it the maximum?

Nazar Khan

Machine Learning



Information Theory

Information Theory
Entropy

» For a continuous r.v X with pdf p, we define differential
entropy as

Hipl = [ plx)In p(x)dx

» For multivariate x

H[p] = —/p(X)ln p(x)dx
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Information Theory

Information Theory
Finding the Maximum Entropy Distribution — Discrete Case

» How can we find the continuous distribution p(x) that
maximises the entropy H[p]?

» The maximum entropy discrete distribution was the uniform
distribution.

» The maximum differential entropy continuous distribution is
the Gaussian distribution (Excercise 1.34 in Bishop's book).
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Information Theory

Information Theory
Entropy

» Differential entropy of the Gaussian is
1 2
H[x] = 5{1 + In(2w0°)}

» Proportional to 0. Entropy increases as more values become
probable.

: 2 _ 1
» Can also be negative (for 0= < 7).
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Information Theory

Information Theory
Conditional Entropy

» Let p(x,y) be a joint distribution.

» Given x, additional information needed to specify y is the
conditional information — In(p(y|x)).

» So expected conditional information is

Hiylx = [ [ ply.x)inplyix)dyx

» Also called the conditional entropy of y given x.

» Satisfies H[x,y] = H[y|x] + H[x]. Information needed to
specify x and y equals information for x alone plus additional
information needed to specify y given x.
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Information Theory

Information Theory
Relative entropy

» Let r.v. x have a true distribution p(x) and let our estimate of
this distribution be g(x).

» Average information required to specify x when its information
content is determined using p(x) is given by the entropy

Hlpl = [ p()1np(x 2)

» Average information required to specify x when its information
content is determined using g(x) is given by

Mﬂ——/mwm«n 3)
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Information Theory

Information Theory
Relative entropy

» Average additional information required to specify x when g(x)
is used instead of p(x) is given by

Alql — Hlp] = (- [ p(x)Inq(x)) — (— [ p(x)In p(x)).

» This is known as the relative entropy, or Kullback-Leibler
(KL) divergence.

KL(pllq) = <—/p(X)|n q(X)) dx — (—/p(X)ln p(X)) dx
(2o

> KL(pllg) # KL(qllp).
» KL(p||g) > 0 with equality for p = q.
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Information Theory

Convex Functions

» A function f(x) is convex if every chord lies on or above the
function.

» Any value of x in the interval a to b can be parameterised as
Aa+ (1 —X)bwhere 0 <\ < 1.

» The corresponding point on the chord can be parameterised as
Af(a) + (1 — N)f(b).

» The corresponding point on the function can be parameterised
as f(Aa+ (1 — \)b).
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Information Theory

Convex Functions

» Convexity implies points on chord lie on or above points on
function. That is

f(Aa+ (1 — \)b) < Af(a) + (1 — \)f(b)

» Convexity is equivalent to positive second derivative
everywhere.

» If function and chord are equal only for A =0 and A = 1, then
the function is called strictly convex.

» The inverse property (every chord lies on or below the
function) is called concavity.

» If f(x) is convex, then —f(x) will be concave.
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Information Theory

Jensen’s Inequality

» Every convex function f(x) satisfies the so-called Jensen’s

inequality
M M
f <Z )\,-x,-) <) Nf (%)
=1 =1L

where \; > 0 and Z,’\il A;i = 1 for any set of points
(Xl, oo ,XM).

> Interpreting the \; as probabilities p(x;), Jensen's inequality
can be formulated for discrete random variables as

F(E[X]) <E[f(x)]

» For continuous random variables, Jensen's inequality becomes

f < / xp(xdx) < / f (x) p(xdx
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Information Theory

KL-divergence

» Using Jensen's inequality

KL(pl|q) = —/p(x) In {qui} dx > — |n/q(x)dx

p(X
—_——— N—_——
concave =1
N’

where the equality holds only when p(x) = g(x) Vx (because
— In x is strictly convex).

» Since KL(p||q) > 0 and KL(p||p) = 0, KL-divergence can be
interpreted as a measure of dissimilarity between
distributions p(x) and g(x).
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Information Theory

Relation between data compression and density estimation

» Optimal compression requires the true density.

» For estimated density, KL-divergence gives average,
additional information required by transmitting via
estimated density instead of true density.
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Information Theory

Density Estimation via KL-divergence

» Suppose we have finite data points xi,...,xy drawn from an
unknown distribution p(x).

» We want to approximate p(x) by some parametric distribution
9(x(6).

» We can do this by finding 6 that minimizes KL(p||g). But p
is unknown.

» However, KL(p||q) is an expectation w.r.t p(x) and can be
approximated by the ordinary average for large N (law of large
numbers). So

Ke(plla) == [ pin{ 2V} ax @)

1 N
NN > {~1Inq(x4|6) + In p(x)}
n=1
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Information Theory

Density Estimation via KL-divergence

> Minimizing w.r.t @ is equivalent to minimizing
ZnNzl —In g(x,|0@) which is the negative log-likelihood of
data under g(x|6).

» So minimizing KL-divergence is equivalent to maximising
likelihood (ML estimation).
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Information Theory

Mutual Information

» Given 2 random variables x and y, can we find how
independent they are?

» If they are independent then p(x,y) = p(x)p(y). So
KL(p(x,y)llp(x)p(y)) = O.

» Therefore, KL(p(x,y)||p(x)p(y)) is a measure of how
independent x and y are.

» Also called the mutual information /[x, y] between variables
x and y.

I[x,y] = KL(p(x,y)|lp(x)p(y)) (5)

] e ()

» I[x,y] > 0 with equality iff x and y are independent.
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Information Theory

Mutual Information

> Using the sum and product rules

Ix,yl=  HX| = Hixly]
~—~ ———
avg. info. needed  avg. info. needed
to transmit x to transmit x
knowing state of y
= Hhl - HbiX
—~— ~——
avg. info. needed  avg. info. needed
to transmit y to transmit y

knowing state of x

» Mutual information captures

» Information about x that is contained in y.

» Information about y that is contained in x.

» Reduction in uncertainty of one variable when the other is
known.
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