CS-567 Machine Learning

Nazar Khan

PUCIT

Lectures 9-13 Nov 10, 12, 17, 19, 24 2015

- Probability Theory: Mathematical framework for quantifying uncertainty.
- Decision Theory: Combines with probability theory to make optimal decisions in uncertain scenarios.
- ▶ **Inference**: Determining p(x, t) from training data.
- Decision: Find a particular t.
- ▶ p(x, t) is the most complete description of the data.
 - ▶ But a decision still needs to be made.
 - ► This decision is generally very simple after inference.

- Given X-ray image x, we want to know if the patient has a certain disease or not.
- ▶ Let t = 0 correspond to the disease class, denoted by C_1 .
- ▶ Let t = 1 correspond to the non-disease class, denoted by C_2 .
- Using Bayes' theorem

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$

- ▶ All quantities can be obtained from p(x, t) either via marginalization or conditioning.
- ▶ Intuitivley, to minimise chance of error, assign x to class with highest posterior.

- ► Any decision rule places inputs **x** into *decision regions*.
- ▶ If my decision rule places x in region \mathcal{R}_1 , I will say that x belongs to class \mathcal{C}_1 .
- ▶ The probability of x belonging to class C_1 is $p(x, C_1)$. This is the probability of my decision being correct.
- Similarly, the probability of my decision being incorrect is $p(x, C_2)$.

When one input x has been decided upon

$$\begin{split} p(\mathsf{mistake} \ \mathsf{on} \ \mathsf{x}) &= p(\mathsf{x} \ \mathsf{placed} \ \mathsf{in} \ \mathsf{region} \ 1 \ \mathsf{and} \ \mathsf{belongs} \ \mathsf{to} \ \mathsf{class} \ 2 \\ &\qquad \mathsf{OR} \\ &\qquad \mathsf{x} \ \mathsf{placed} \ \mathsf{in} \ \mathsf{region} \ 2 \ \mathsf{and} \ \mathsf{belongs} \ \mathsf{to} \ \mathsf{class} \ 1) \\ &= p(\mathsf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathsf{x} \in \mathcal{R}_2, \mathcal{C}_1) \end{split}$$

When all inputs have been decided upon

$$p(\text{mistake}) = \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x}$$

- ▶ $p(\text{mistake on } \mathbf{x})$ is minimized when \mathbf{x} is placed in the region \mathcal{R}_k with the highest $p(\mathbf{x}, \mathcal{C}_k)$.
- ▶ Overall p(mistake) is minimized when each x is placed in the region \mathcal{R}_k with the highest $p(x, \mathcal{C}_k)$.
- ▶ Highest $p(x, C_k)$ \Longrightarrow highest $p(C_k|x)p(x)$ \Longrightarrow highest $p(C_k|x)$.
- ▶ For K classes also, p(mistake) is minimised by placing each x in the region \mathcal{R}_k with highest posterior $p(\mathcal{C}_k|x)$. This is known as the Bayesian decision rule.

- Suppose we are classifying plant leaves as poisonous or not.
- Are the following mistakes equal?
 - Poisonous leaf classified as non-poisonous.
 - Non-poisonous leaf classified as poisonous.
- We can assign a loss value to each mistake.

Classified as

▶ L_{kj} is the loss incurred by classifying a class k item as class j.

When mistakes are not equally bad, instead of minimising the number of mistakes, it is better to minimize the expected loss.

$$\mathbb{E}[L] = \sum_{k} \sum_{j} L_{kj} p(L_{kj})$$
$$= \sum_{k} \sum_{j} L_{kj} \int_{\mathcal{R}_{j}} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}$$

▶ To minimise overall expected loss, place each x in the region j for which expected loss $\mathbb{E}[L_j]$ is minimum

$$\mathbb{E}[L_j] = \sum_k L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

is minimum.

Decision Theory Reject Option

- Classification error is high when $p(x, C_k)$ (or equivalently $p(C_k|x)$) is comparable for all k.
- Uncertainty because no class is a clear winner.
- Reject option: Avoid making a decision on uncertain scenarios.
- ▶ Do not make a decision for **x** for which largest $p(C_k|\mathbf{x}) \leq \theta$.
- Loss matrix can include loss of reject option too.

Classified as poisonous poisonous non-poisonous reject 0 1000 100 non-poisonous 1 0 200 /

3 Approaches for Solving Decision Problems

- **1. Generative**: Infer posterior $p(C_k|\mathbf{x})$
 - either by inferring $p(\mathbf{x}|\mathcal{C}_k)$ and $p(\mathbf{x})$ and using Bayes' theorem,
 - or by inferring $p(\mathbf{x}, C_k)$ and marginalizing.
 - ▶ Called generative because $p(\mathbf{x}|\mathcal{C}_k)$ and/or $p(\mathbf{x},\mathcal{C}_k)$ allow us to generate new \mathbf{x} 's.
- **2. Discriminative**: Model the posterior $p(C_k|\mathbf{x})$ directly.
 - If decision depends on posterior, then no need to model the joint distribution.
- 3. Discriminant Function: Just learn a discriminant function that maps x directly to a class label.
 - $f(\mathbf{x})=0$ for class \mathcal{C}_1 .
 - $f(\mathbf{x})=1$ for class C_2 .
 - No probabilities

Generative Approach

- ▶ For high dimensional x, estimating $p(x|C_k)$ requires large training set.
- \triangleright p(x) allows **outlier detection**. Also called **novelty detection**.
- ▶ Estimating $p(C_k)$ is easy just use fraction of training data for each class.

Discriminant Functions

- Directly learn the decision boundaries.
- ▶ But now we don't have the posterior probabilities.

Benefits of knowing the posteriors $p(C_k|x)$

- ▶ If loss matrix changes, decision rule can be trivially revised. Discriminant functions would require retraining.
- Reject option can be used.
- Different models can be combined systematically.

Combining Models

Let's say we have X-ray images x_I and blood-tests x_B and want to classify into disease or not disease.

- ▶ Method 1: Form $\mathbf{x} = \begin{bmatrix} \mathbf{x}_I \\ \mathbf{x}_B \end{bmatrix}$ and learn classifier for \mathbf{x} .
- ▶ Method 2: Learn $p(C_k|\mathbf{x}_I)$ and $p(C_k|\mathbf{x}_B)$.
 - Assuming conditional independence $p(\mathbf{x}_I, \mathbf{x}_B | \mathcal{C}_k) = p(\mathbf{x}_I | \mathcal{C}_k) p(\mathbf{x}_B | \mathcal{C}_k)$

$$p(C_k|\mathbf{x}_I,\mathbf{x}_B) \propto p(\mathbf{x}_I,\mathbf{x}_B|C_k)p(C_k)$$

$$\propto p(\mathbf{x}_I|C_k)p(\mathbf{x}_B|C_k)p(C_k)$$

$$\propto \frac{p(C_k|\mathbf{x}_I)p(C_k|\mathbf{x}_B)}{p(C_k)}$$

- Normalise r.h.s using $\sum_{k} p(C_k|\mathbf{x}_I,\mathbf{x}_B)$.
- ► The conditional independence assumption is also known as the naive Bayes model.

Loss functions for regression

- ► So far we have used decision theory for classification problems.
- ▶ Loss functions can also be defined for regression problems.
- For example, for the polynomial fitting problem a loss function can be described as $L(t, y(x)) = (y(x) t)^2$.
- Expected loss can be written as

$$E[L] = \int \int (y(x) - t)^2 p(x, t) dx dt$$

➤ The minimising polynomial function can be written using calculus of variations as

$$y(x) = \frac{\int tp(x, t)dt}{p(x)} = \int tp(t|x)dt = E_t[t|x]$$

which is the expected value of t given x. Also called the regression function.

▶ For multivariable outputs t, optimal $y(x) = E_t[t|x]$

3 Approaches for Solving Regression Problems

- Similar to the case of classification problems, there are 3 approaches to solve regression problems.
 - 1. Infer $p(\mathbf{x}, t)$, marginalize to get $p(\mathbf{x})$, normalize to get $p(t|\mathbf{x})$ and use it to compute conditional expectation $E_t[t|\mathbf{x}]$.
 - 2. Infer $p(t|\mathbf{x})$ directly and use it to compute conditional expectation $E_t[t|\mathbf{x}]$.
 - **3.** Find regression function y(x) directly.
- The relative merits of each approach are similar to those of clasification approaches.

Information Theory

- lacktriangle Amount of additional information \propto degree of surprise.
- If a highly unlikely event occurs, you gain a lot of new information.
- If an almost certain event occurs, you gain not much new information.
- lacktriangle So information $\propto \frac{1}{\text{probability}}$

Information Theory

- For unrelated events x and y
 - ▶ Information from both events should equal information from *x* plus information from *y*.
 - p(x,y) = p(x)p(y)
- ► From these two relationships, it can be shown that information must be given by the logarithm function.

$$h(x,y) = -\log(p(x,y))$$

$$= -\log(p(x)p(y))$$

$$= -\log(p(x)) - \log(p(y))$$

$$h(x) = -\log(p(x))$$

where h(x) denotes the information given by x.

- ▶ For base 2 log, units of information h(x) are 'bits'.
- For natural log, units of information h(x) are 'nats' (1 nat= ln 2 bits).

If information given by random variable x is given by a function $h(x) = -\log(p(x))$, then expected information from r.v x is

$$H[x] = E[h(x)] = -\sum \log(p(x))p(x)$$

- Also called the entropy of random variable x.
- Entropy is just a fancy name for expected information contained in a random variable.

- ▶ To transmit a r.v x with 8 equally likely states, we need 3 bits $(= log_2 8)$.
- ► Entropy $H[x] = -\sum_{1/8} \log_2 \frac{1}{8} = 3$ bits.
- For non-uniform probabilities, entropy is reduced.
- Entropy quantifies order/disorder.
- Entropy is a lower-bound on the number of bits needed to transmit the state of a random variable.

► For a *discrete* r.v X with pdf p, entropy is

$$H[p] = -\sum_{i} p(x_i) \ln p(x_i) \tag{1}$$

- ▶ Sharply peaked distribution ⇒ low entropy.
- Evenly spread distribution \iff high entropy.
- Is the entropy non-negative?
- What is its minimum value?
- ▶ When does the minimum value occur?

Information TheoryFinding the Maximum Entropy Distribution – Discrete Case

- ▶ How can we find the *discrete* distribution p(x) that maximises the entropy H[p]?
- Since p must add up to 1, this a constrained maximisation problem.
- ▶ The Lagrangian function is

$$\tilde{H} = -\sum_{i} p(x_i) \ln p(x_i) + \lambda \left(\sum_{i} p(x_i) - 1 \right)$$

- ▶ The maximum is given by the stationary point of \tilde{H} .
- ▶ Why is it the maximum?

► For a *continuous* r.v X with pdf p, we define **differential entropy** as

$$H[p] = -\int p(x) \ln p(x) dx$$

For multivariate x

$$H[p] = -\int p(x) \ln p(x) dx$$

Information TheoryFinding the Maximum Entropy Distribution – Discrete Case

- ► How can we find the *continuous* distribution p(x) that maximises the entropy H[p]?
- The maximum entropy discrete distribution was the uniform distribution.
- The maximum differential entropy continuous distribution is the Gaussian distribution (Excercise 1.34 in Bishop's book).

Differential entropy of the Gaussian is

$$H[x] = \frac{1}{2} \{ 1 + \ln(2\pi\sigma^2) \}$$

- ▶ Proportional to σ^2 . Entropy increases as more values become probable.
- ► Can also be negative (for $\sigma^2 < \frac{1}{2\pi e}$).

Information Theory Conditional Entropy

- Let p(x, y) be a joint distribution.
- ▶ Given x, additional information needed to specify y is the conditional information $-\ln(p(y|x))$.
- So expected conditional information is

$$H[\mathbf{y}|\mathbf{x}] = \int \int p(\mathbf{y}, \mathbf{x}) \ln p(\mathbf{y}|\mathbf{x}) d\mathbf{y} \mathbf{x}$$

- Also called the conditional entropy of y given x.
- Satisfies H[x, y] = H[y|x] + H[x]. Information needed to specify x and y equals information for x alone plus additional information needed to specify y given x.

Information Theory Relative entropy

- Let r.v. x have a true distribution p(x) and let our estimate of this distribution be q(x).
- Average information required to specify x when its information content is determined using p(x) is given by the entropy

$$H[p] = -\int p(x) \ln p(x)$$
 (2)

Average information required to specify x when its information content is determined using q(x) is given by

$$\tilde{H}[q] = -\int p(\mathbf{x}) \ln q(\mathbf{x}) \tag{3}$$

Information Theory Relative entropy

- Average *additional* information required to specify x when q(x) is used instead of p(x) is given by $\tilde{H}[q] H[p] = (-\int p(x) \ln q(x)) (-\int p(x) \ln p(x))$.
- This is known as the relative entropy, or Kullback-Leibler (KL) divergence.

$$KL(p||q) = \left(-\int p(x) \ln q(x)\right) dx - \left(-\int p(x) \ln p(x)\right) dx$$
$$= -\int p(x) \ln \left\{\frac{q(x)}{p(x)}\right\} dx$$

- \blacktriangleright $KL(p||q) \neq KL(q||p).$
- ▶ $KL(p||q) \ge 0$ with equality for p = q.

Convex Functions

- A function f(x) is convex if every chord lies on or above the function.
- Any value of x in the interval a to b can be parameterised as $\lambda a + (1 \lambda)b$ where $0 \le \lambda \le 1$.
- ▶ The corresponding point on the chord can be parameterised as $\lambda f(a) + (1 \lambda)f(b)$.
- ▶ The corresponding point on the function can be parameterised as $f(\lambda a + (1 \lambda)b)$.

Convex Functions

 Convexity implies points on chord lie on or above points on function. That is

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$

- Convexity is equivalent to positive second derivative everywhere.
- ▶ If function and chord are equal only for $\lambda = 0$ and $\lambda = 1$, then the function is called **strictly convex**.
- The inverse property (every chord lies on or below the function) is called concavity.
- ▶ If f(x) is convex, then -f(x) will be concave.

Jensen's Inequality

Every convex function f(x) satisfies the so-called Jensen's inequality

$$f\left(\sum_{i=1}^{M}\lambda_{i}x_{i}\right)\leq\sum_{i=1}^{M}\lambda_{i}f\left(x_{i}\right)$$

where $\lambda_i \geq 0$ and $\sum_{i=1}^{M} \lambda_i = 1$ for any set of points (x_1, \dots, x_M) .

▶ Interpreting the λ_i as probabilities $p(x_i)$, Jensen's inequality can be formulated for *discrete random variables* as

$$f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]$$

► For *continuous random variables*, Jensen's inequality becomes

$$f\left(\int \mathsf{x}p(\mathsf{x}d\mathsf{x}\right) \le \int f(\mathsf{x})\,p(\mathsf{x}d\mathsf{x})$$

KL-divergence

Using Jensen's inequality

$$KL(p||q) = -\int p(x) \underbrace{\ln \left\{ \frac{q(x)}{p(x)} \right\}}_{\text{concave}} dx \ge - \underbrace{\ln \int_{=1}^{q(x)} q(x) dx}_{=1}$$

where the equality holds only when $p(\mathbf{x}) = q(\mathbf{x}) \ \forall \mathbf{x}$ (because $-\ln x$ is strictly convex).

Since KL(p||q) ≥ 0 and KL(p||p) = 0, KL-divergence can be interpreted as a measure of dissimilarity between distributions p(x) and q(x).

Relation between data compression and density estimation

- Optimal compression requires the true density.
- For estimated density, KL-divergence gives average, additional information required by transmitting via estimated density instead of true density.

Density Estimation via KL-divergence

- Suppose we have finite data points $x_1, ..., x_N$ drawn from an *unknown* distribution p(x).
- ▶ We want to approximate p(x) by some parametric distribution $q(x|\theta)$.
- ▶ We can do this by finding θ that minimizes KL(p||q). But p is unknown.
- ▶ However, KL(p||q) is an expectation w.r.t p(x) and can be approximated by the ordinary average for large N (law of large numbers). So

$$KL(p||q) = -\int p(\mathbf{x}) \ln \left\{ \frac{q(\mathbf{x}|\boldsymbol{\theta})}{p(\mathbf{x})} \right\} d\mathbf{x}$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} \{ -\ln q(\mathbf{x}_n|\boldsymbol{\theta}) + \ln p(\mathbf{x}) \}$$
(4)

Density Estimation via KL-divergence

- Minimizing w.r.t θ is equivalent to minimizing $\sum_{n=1}^{N} -\ln q(\mathbf{x}_n|\theta)$ which is the negative log-likelihood of data under $q(\mathbf{x}|\theta)$.
- ► So minimizing KL-divergence is equivalent to maximising likelihood (ML estimation).

Mutual Information

- Given 2 random variables x and y, can we find how independent they are?
- If they are independent then p(x, y) = p(x)p(y). So KL(p(x, y)||p(x)p(y)) = 0.
- ► Therefore, KL(p(x,y)||p(x)p(y)) is a measure of how independent x and y are.
- Also called the mutual information I[x,y] between variables x and y.

$$I[\mathbf{x}, \mathbf{y}] = KL(p(\mathbf{x}, \mathbf{y})||p(\mathbf{x})p(\mathbf{y}))$$

$$= -\int \int p(\mathbf{x}, \mathbf{y}) \ln \left(\frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})}\right) d\mathbf{x} d\mathbf{y}$$
(5)

▶ $I[x, y] \ge 0$ with equality iff x and y are independent.

Mutual Information

Using the sum and product rules

$$I[x, y] = \underbrace{H[x]}_{\text{avg. info. needed to transmit x}} - \underbrace{H[x|y]}_{\text{avg. info. needed to transmit x}}_{\text{knowing state of y}}$$

$$= \underbrace{H[y]}_{\text{avg. info. needed to transmit y}} - \underbrace{H[y|x]}_{\text{avg. info. needed to transmit y}}_{\text{knowing state of x}}$$

- Mutual information captures
 - Information about x that is contained in y.
 - ▶ Information about **y** that is contained in **x**.
 - Reduction in uncertainty of one variable when the other is known.