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The Gaussian Distribution

The Gaussian Distribution

» The Gaussian distribution for a continuous, multivariate
D-dimensional vector x is given by

N(xs, ) 3= 0= - )
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where the D x D matrix X is called the covariance matrix

and |X| is its determinant.

» Gaussian distribution is intrinsically uni-modal. Its mode is the
same as its mean .

» Cannot represent multi-modal data. For that a mixture of
Gaussians can be used.
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The Gaussian Distribution

Mahalanobis Distance

» The term within the exponent is the so-called Mahalanobis
distance

d(x) = (x — ) "= (x — pr)
» All x satisfying d(x) = k constitute the k-th iso-surface of
function d(-).

> |so-surfaces of Mahalanobis distance are iso-surfaces of the
Gaussian density also.
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The Gaussian Distribution

Y. — The Covariance Matrix

» Covariance matrix X is

» Real-valued
» Symmetric
» Positive Definite (all eigenvalues are positive)

» |ts eigen-decomposition can be written as

D
Y= E )\,-u,-u,-T
=1L

» Using this eigen-decomposition, its inverse can be written as

Nazar Khan Machine Learning



The Gaussian Distribution

Y. — The Covariance Matrix
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Figure: Elliptical iso-contour of a 2D Gaussian. Center of ellipse is
determined by g, axes are determined by the eigenvectors of 3 and axes
lengths are determined via the eigenvalues of X.
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The Gaussian Distribution

Y. — The Covariance Matrix

» Covariance matrix X can be categorised as

Category | ¥ (D =2) | DoF | Iso-contours (D = 2)
@
o} o10 D(D+1) O .
GEneral (0_2;_1 ;52) — 5 ] @
. a? 0 @
Diagonal ( 5 ag) D —
Isotropic a2l 1 —

» Diagonal and isotropic cases are easy to work with but cannot
represent data with interesting correlations.
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The Gaussian Distribution

Central Limit Theorem

» For random variables x1, ..., xy that belong to any
distribution (non-Gaussian), the sum s = x3 + - -+ + xp
approaches a Gaussian random variable as N approaches oc.

» This is known as the Central Limit Theorem.

» This is one reason for the popularity of the Gaussian
distribution — lots of natural phenomena correspond to sums or
averages of many (non-Gaussian) random variables. For large
enough N, these phenomena can be modelled by Gaussian
distributions.
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Parametric Density Estimation

Fitting Gaussian density to data

» We have already covered how ML and MAP estimates for
Gaussian density can be obtained.
» For computing log-likelihood of Gaussian, it is sufficient to
pre-compute the following 2 statistics from the data:
» the D x 1 vector Z"NZI X
> the D x D matrix YN | x,x7
» These statistics are called sufficient statistics for log-likelihood
of Gaussian. The individual data items can be discarded once
these are computed.
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Parametric Density Estimation

Parametric Density Estimation
Disadvantage

So far, we have considered fitting a parametric density
function to data.

The density function is governed by some parameters 8 and
the goal has been to find the optimal parameters 6*.

A major weakness of parametric methods is that if the chosen
density function cannot represent the given data then no
optimal parameters will exist.

» For example, fitting Gaussian density to multi-modal data.

Now we will study non-parametric density estimation methods.
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Non-Parametric Density Estimation

Non-Parametric Density Estimation
Histogram based

» We have already covered a very basic non-parametric density
estimation method — via histograms.
» The basic idea is simple.
» Divide input space into bins.
» Count number of observations/data points in each bin.
» Normalise bin values to obtain probabilities.
» A more specific algorithm.
» Divide input space into bins.
» Count number of observations/data points n; in bin i with
width/volume A;.
» Normalise each bin value by dividing by its volume A;. This
makes small and large bins comparable.
» Normalise again by dividing by total number of observations N
to obtain probabilities.
> |n short, probability of bin i can be obtained as
nj
pi = NA;
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Non-Parametric Density Estimation

Non-Parametric Density Estimation
Histogram based

» Advantages
» Once the histogram is computed, the data can be discarded.
This is beneficial for

> large datasets
> sequential learning

» Disadvantages

» p(x) is discontinuous only due to having bin edges. The
underlying distribution that generated the data might not be
discontinuos.

» Curse of dimensionality.

> If we divide each variable in a D-dimensional space into M
bins, then total number of bins will be M® which scales
exponentially with D.

> To ensure that each bin gets enough data to estimate
probability reliably, we will need /ots of data.
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Non-Parametric Density Estimation

Non-Parametric Density Estimation
Alternative methods

» Better scaling with dimensionality is acheived by two other
density estimation techniques

» Kernel estimators
» Nearest neighbours
» Based on the same idea as the histogram based method — in
order to estimate p(x), consider data around x.
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Non-Parametric Density Estimation

Non-Parametric Density Estimation
Alternative methods

» Probability of data points in region R is given by
P = [ p(x)dx.

» P can also be viewed as the probability of a new data point
falling in region R.

» For N observation, probability of K observations falling in
region R is given by the Binomial distribution.

N!

Bin(K|N, P) = RN =Rl

PK(1— p)N=K

» Since K ~ Bin(N, P), E[K] = NP and var(K) = NP(1 — P).
> Therefore, E[X] = P and var( = P(lN P

» Since limpy_o0 var(

) =0, N stays close to its expected value
P and we can write % P.
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Non-Parametric Density Estimation

Non-Parametric Density Estimation
Alternative methods

> In a small region R with volume V around location x, we can
assume that probability density of points remains constant.
We denote that constant density value by p(x).

» Probability mass P of region R is the product of density and
volume. That is, P = p(x)V.

» From the previous slide, we can now write % ~ p(x)V.

» This yields the following formula for non-parametric density
estimation

PO = 1 (1)

» Notice that histogram based density estimation also used the
same formula with K = n; and V = A;.
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Non-Parametric Density Estimation

Non-Parametric Density Estimation
Alternative methods

» Now we have 2 options to compute p(x)

1. Fix a volume V around location x, count number of data
points K lying within that volume and compute p(x) using
Equation (1). This method is known as density estimation
through Kernel Estimators.

2. Fix a number K and find the K closest data points around
location x, compute volume V of the region encompassing
these nearest neighbours and compute p(x) using Equation
(1). This method is known as density estimation through
Nearest Neighbours.
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Non-Parametric Density Estimation

Non-Parametric Density Estimation
Kernel Estimators

» Consider a unit hyper-cube around the origin and a point u.

» We want a function that returns 1 if u lies inside the
hyper-cube and 0 if it lies outside.

» This function/kernel can be written as

1, if|y|<3fori=1,....,D
()= { 0, otherwise

» To perform the same operation for a unit hyper-cube centered
on a location x, we can use the modified kernel

1, ifju—x|<3fori=1,...,D
A== { 0, otherwise

> Similarly, to perform the same operation for a hyper-cube with
dimension length h centered on a location x, we can use the
modified kernel k(“7*).

Nazar Khan Machine Learning



Non-Parametric Density Estimation

Non-Parametric Density Estimation
Kernel Estimators

» This gives us a way of counting number of data points in a
hyper-cube of volume hP around location x as
N ne
K =2 p1 k(* h =)

» Finally, p(x) can be computed using Equation (1) as

p(x) = %.

» This method is also known as the Parzen window approach.
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Non-Parametric Density Estimation

Non-Parametric Density Estimation
Kernel Estimators

» Use of the hyper-cube with a binary in/out decision leads to
artificial, discontinuous estimates for p(x).

» One alternative is to use a smoother (e.g., Gaussian) kernel
function instead.

Z 7||Un —x|?
N VAl 271'h2 2h?

where h plays the role of a smoothing parameter.

» Any kernel function satisfying k(u) > 0 and [ k(u)du =1 can
be used. This will ensure that the resulting density function
also satisfies p(x) > 0 and [ p(x)dx = 1.
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Non-Parametric Density Estimation

Non-Parametric Density Estimation
Nearest Neighbours

» Here the idea is to fix K and determine volume V from the
data.

» We consider a small hyper-sphere around location x and allow
its radius to grow until it contains exactly K data points.

» p(x) can then be computed using Equation (1) where V is the
volume of the resulting hyper-sphere.
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Non-Parametric Density Estimation

Non-Parametric Density Estimation
Disdvantage of KDE and KNN

» For both kernel estimators and nearest neighbours, p(x) is
computed using all N points of the training data.

» Therefore, training data cannot be discarded.

» Evaluation cost of p(x) grows linearly with N.
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