CS-567 Machine Learning

Nazar Khan

PUCIT

Lectures 22-25 Jan 12, 14, 19, 21 2016

Classification

- In the previous topic, regression, the goal was to predict continuous target variable(s) t given input variables vector x.
- ▶ In *classification*, the goal is to predict *discrete* target variable(s) *t* given input variables vector x.
- ► Input space is divided into *decision regions*.
- Boundaries between regions are called decision boundaries/surfaces.
- ▶ Training corresponds to finding optimal decision boundaries given training data $\{(x_1, t_1), \dots, (x_N, t_N)\}$.

Classification

- Assign x to 1-of-K discrete classes C_k .
- ▶ Most commonly, the classes are distinct. That is, x is assigned to one and only one class.
- Convenient coding schemes for targets t are
 - ▶ 0/1 coding for binary classification.
 - ▶ 1-of-K coding for multi-class classification. Example, for \mathbf{x} belonging to class 3, the $K \times 1$ target vector will be coded as $\mathbf{t} = (0, 0, 1, 0, \dots, 0)^T$.

Linear Classification

- Like regression, the simplest classification model is *linear classification*.
 - ► This means that the decision surfaces are linear functions of \mathbf{x} , for example $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x} + w_0 = 0$.
 - ▶ That is, a linear decision surface is a D-1 dimensional hyperplane in D-dimensional space.
- ▶ Data in which classes can be *separated exactly* by *linear decision surfaces* is called *linearly separable*.

Linear Classification Discriminant Functions

Linear Classification

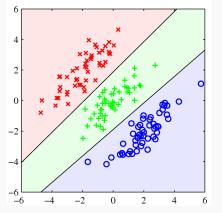


Figure: Linearly separable data and corresponding linear decision boundaries.

3 Approaches for Solving Classification (Decision) Problems

- **1. Generative**: Infer posterior $p(C_k|\mathbf{x})$
 - either by inferring $p(\mathbf{x}|\mathcal{C}_k)$ and $p(\mathbf{x})$ and using Bayes' theorem,
 - or by inferring $p(\mathbf{x}, C_k)$ and marginalizing.
 - ► Called generative because $p(\mathbf{x}|\mathcal{C}_k)$ and/or $p(\mathbf{x}, \mathcal{C}_k)$ allow us to generate new \mathbf{x} 's.
- **2. Discriminative**: Model the posterior $p(C_k|\mathbf{x})$ directly.
 - If decision depends on posterior, then no need to model the joint distribution.
- 3. Discriminant Function: Just learn a discriminant function that maps x directly to a class label.
 - $f(\mathbf{x})=0$ for class \mathcal{C}_1 .
 - $f(\mathbf{x})=1$ for class C_2 .
 - No probabilities

Linear Classification Generalized Linear Model

- The simplest linear regression model computes continuous outputs $y(x) = \mathbf{w}^T \mathbf{x} + w_0$.
- ▶ By passing these continuous outputs through a non-linear function $f(\cdot)$, we can obtain discrete class labels.

$$y(\mathbf{x}) = f(\mathbf{w}^T \mathbf{x} + w_0)$$

- ▶ This is known as a generalised linear model and $f(\cdot)$ is known as the activation function.
 - Decision surfaces correspond to all inputs x where y(x) = const. This is equivalent to the condition w^Tx + w₀ = const.
 - ▶ Therefore, decision surfaces are linear functions of the input \mathbf{x} , even if $f(\cdot)$ is non-linear.
- As before, we can replace x by a non-linear transformation $\phi(x)$ and learn non-linear boundaries in x-space by learning linear boundaries in ϕ -space.

Linear Discriminant Functions Two class case

- ▶ The simplest linear discriminant function is given by $y(x) = \mathbf{w}^T \mathbf{x} + w_0$ where \mathbf{w} is called the *weight vector* and w_0 is called the *bias*.
- Classification is performed via the non-linear step

$$\mathsf{class}(\mathsf{x}) = \begin{cases} \mathcal{C}_1 & \text{if } y(\mathsf{x}) \ge 0 \\ \mathcal{C}_2 & \text{if } y(\mathsf{x}) < 0 \end{cases}$$

- ▶ We can view $-w_0$ as a *threshold*.
- ► Weight vector **w** is always orthogonal to the decision surface.
 - Proof: For any two points \mathbf{x}_A and \mathbf{x}_B on the surface, $y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0 \Rightarrow \mathbf{w}^T(\mathbf{x}_A \mathbf{x}_B) = 0$. Since vector $\mathbf{x}_A \mathbf{x}_B$ is along the surface, \mathbf{w} must be orthogonal.

Linear Discriminant Functions Two class case

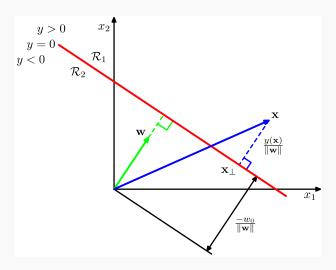


Figure: Geometry of linear discriminant function in \mathbb{R}^2 .

Linear Discriminant Functions Two class case

- Normal distance of any point x from decision boundary can be computed as $d = \frac{y(x)}{\| \mathbf{w} \|}$.
 - Proof:

$$\mathbf{x} = \mathbf{x}_{\perp} + d \frac{\mathbf{w}}{||\mathbf{w}||}$$

$$\Rightarrow \mathbf{w}^{T} \mathbf{x} + w_{0} = \mathbf{w}^{T} \mathbf{x}_{\perp} + w_{0} + d \mathbf{w}^{T} \frac{\mathbf{w}}{||\mathbf{w}||}$$

$$\Rightarrow d = \frac{y(\mathbf{x})}{||\mathbf{w}||}$$

Normal distance to boundary from origin (x = 0) is $\frac{w_0}{||\mathbf{w}||}$.

Linear Discriminant Functions

► For notational convenience, bias can be included as a component of the weight vector via

$$\tilde{\mathbf{w}} = (w_0, \mathbf{w})$$
 $\tilde{\mathbf{x}} = (1, \mathbf{x})$
 $y(\mathbf{x}) = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$

Linear Discriminant Functions Multiclass case

- ▶ For K class classification with K > 2, we have 3 options
 - **1.** Learn K-1 *one-vs-rest* binary classifiers.
 - 2. Learn K(K-1)/2 one-vs-one binary classifiers for every possible pair of classes. Each point can be classified based on majority vote among the discriminant functions.
 - 3. Learn K discriminant functions y_1, \ldots, y_K and then class(\mathbf{x}) = arg max $_k$ y_k (\mathbf{x}).
- ▶ Options 1 and 2 lead to ambiguous classification regions.

Linear Discriminant Functions *Multiclass Ambiguity*

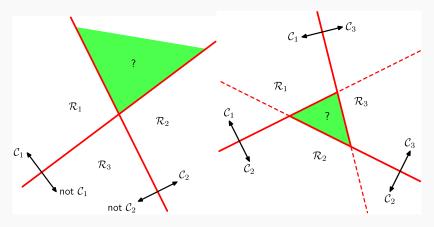


Figure: Ambiguity of multiclass classification using two-class linear discriminant functions.

Linear Discriminant Functions Multiclass case

▶ We can write the K-class discriminant function as

$$y(x) = \widetilde{W}^T \widetilde{x}$$

► For learning, we can write the error function as

$$E(\widetilde{\mathbf{W}}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{y}(\mathbf{x}_n) - \mathbf{t}_n||^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} (\widetilde{\mathbf{W}}^T \widetilde{\mathbf{x}}_n - \mathbf{t}_n)^T (\widetilde{\mathbf{W}}^T \widetilde{\mathbf{x}}_n - \mathbf{t}_n)$$

- ▶ The optimal discriminant function parameters can be computed as $\widetilde{\mathbf{W}}^* = \widetilde{\mathbf{X}}^\dagger \mathbf{T}$ where $\widetilde{\mathbf{X}}^\dagger$ is the pseudo-inverse of the design matrix $\widetilde{\mathbf{X}}$ and \mathbf{T} is the matrix of target vectors.
- As before, we can also work in ϕ -space where we will use the corresponding $\tilde{\Phi}$ as the design matrix.

Linear Discriminant Functions Least Squares Solution

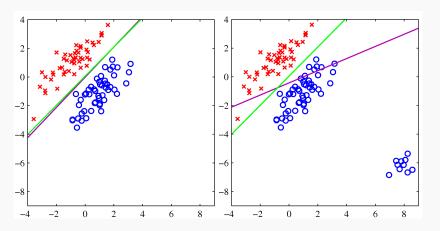


Figure: Least squares solution is sensitive to outliers.

Fisher's Linear Discriminant

- Project all data onto a single vector w.
- Classify by thresholding projected coefficients.
- Optimal vector is one which
 - maximises between-class distance, and
 - minimises within-class distance.

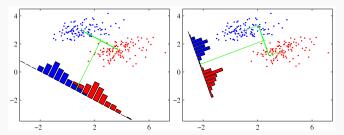


Figure: Fisher's linear discriminant. Classify by thresholding projections onto a vector **w** that maximises inter-class distance and minimises intra-class distances.

Perceptron Algorithm

- Perceptron criterion
- ► To be completed ...

Gradient Descent

- $\qquad \qquad \mathbf{w}^{\mathsf{new}} = \mathbf{w}^{\mathsf{old}} \eta \nabla_{\mathbf{w}}$
- ▶ Role of learning rate η .
- Batch
- Sequential
- ► Stochastic
- Local versus global minima.