CS 565 Computer Vision

Nazar Khan
Lectures 6 and 7: Fourier Transform

Disclaimer

- Any unreferenced image is taken from the following web-page
- http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

Note

- If a hammer is the only tool you have, you will look at every problem as a nail.
- The more tools you have, the more problems you can tackle.
- Our foray into the "Fourier world" is an attempt to gather as many tools as we can.

Fourier Transform

- One of the deepest mathematical insights.
- For any signal, it extracts its "ingredients".
- This is a very powerful idea.
- Given an observation, it gives you the causes.
- Given an image, it gives you its constituents.
- Understanding the Fourier Transform requires some of the most beautiful mathematics ever invented.

Fourier Transform

- The mathematics can become (more than) a little bit overwhelming.
- So we'll break it down into smaller, easier steps.

Fourier Transform - An Analogy

Smoothie to Recipe

Fourier Transform

- We start with some pre-requisite mathematics.
- Remember, math is not magic!
- You can understand it if you take the correct perspective.

Projection

- A 2D vector x can be represented in an orthonormal basis $\left\{b_{1}, b_{2}\right\}$ by the formula $x=\left(x . b_{1}\right) b_{1}+\left(x . b_{2}\right) b_{2}$.
- Coefficient for basis vector k is the projection ($x . b_{k}$).

Mathematical Background

- π
- circumference/diameter of any circle.
- universal constant ($\pi=3.14159265 .$.)
- e
- Euler's number ($e=2.71828182 . .$.)
- i
- non-existent, imaginary number (what!!!!)
- makes analysis and computations easier (i^2=-1)

Complex Numbers

- Real numbers are represented by \mathbb{R}^{1}.
- We can write any real number x as x+0i.
- Therefore, \mathbb{R}^{1} is contained within the space of complex numbers \mathbb{C}^{1}.
- Complex numbers z have a real part $\operatorname{Re}(z)$ and an imaginary part Im(z).
- Basis vector for \mathbb{R}^{1} is the scalar 1.
- Basis vectors for \mathbb{C}^{1} are $\{(1,0),(0, i)\}$.

Complex Numbers

- Norm (magnitude, modulus) of z is given by $|z|=s q r t\left(a^{2}+b^{2}\right)$.
- Phase is the angle $\theta=\arctan (b / a)$.
- A complex number can also be represented in Polar form $z=a+b i=|z| e^{i \theta}$.
- Conjugate of z is given by $\operatorname{conj}(z)=a-b i=|z| e^{-i \theta}$.
- HW: Compute the values of sqrt(z*z) and sqrt(z*conj(z)). Which one yields the norm of z ?

Multiplication by i Represents 90° Rotation in \mathbb{C}

- Multiplication by i is a rotation by 90° counterclockwise in \mathbb{C}.
- $1^{*} i=i$
- $1^{*} i^{*} i=-1$
- $1^{*} i^{*} i^{*}{ }^{i}=-i$
- $1^{*} i^{*} i^{*} i^{*} i=1$

Multiplication by Complex Number Represents Rotation in \mathbb{C}

- Multiplication by any complex number z = a+bi causes rotation by its angle $\theta=\arctan (\mathrm{b} / \mathrm{a})$

The Bigger Picture

- The complex space \mathbb{C} is just a generalization of the real space \mathbb{R} where rotation amounts to multiplication.
- We don't care about \mathbb{C} itself but we care about the fact that in \mathbb{C} complicated rotations can be represented as simply as multiplications.
- We don't care whether -ve numbers actually exist or not, we care that they make calculations of profit/loss or debit/credit easier.

Euler

- One of the greatest mathematicians ever.
- Fundamental contributions in calculus, graph theory, optics, fluid dynamics, mechanics, astronomy and even music theory.
- Almost totally blind for the last 20 years of his life.
- Yet did the most productive work during this time.

Source:
http://en.wikipedia. org/wiki/Leonhard_ Euler

Euler's Formula

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

- Mathematics does not get more beautiful than this equation.
- What you can describe using sinusoids, you can describe using the numbers $e=2.71828182$... and $i=\operatorname{sqrt}(-1)$

In 1988, readers of the Mathematical Intelligencer voted it "the Most Beautiful Mathematical Formula Ever". In total, Euler was responsible for three of the top five formulae in that poll.

Euler's Formula

- What can we describe using $\cos (\theta)$ and $\sin (\theta)$?
- Positions on a circle.
- The formula says that that position is
$2.7182818284^{\theta \sqrt{V}-1}$ or simply $e^{i \theta}$.

$$
\begin{aligned}
& \text { In Matlab: } \\
& \text { >> [exp(sqrt(-1)*pi/4); cos(pi/4)+i*sin(pi/4)] } \\
& \text { ans }= \\
& 0.7071+0.7071 \mathrm{i} \\
& 0.7071+0.7071 \mathrm{i}
\end{aligned}
$$

Euler's Formula

Traversing A Circle

Two Paths, Same Result

Euler's Formula - The Bigger Picture

- Describes circular motion.
- Two ways to describe motion
- Cartesian: Go 3 units east and 4 units north
- Polar: Go 5 units at an angle of 71.56 degrees
- Depending on the problem, polar or Cartesian coordinates are more useful.
- Euler's formula lets us convert between polar and Cartesian representation to use the best tool for the job.

The link between Euler's Formula and

 the Fourier Transform- Fourier's claim: Any signal can be made from circular motion.
- Euler's formula generates all circular motions.
- So Euler's formula is the tool that the Fourier Transform needs to decompose signals into circular motions.

Fourier Transform

- In the Fourier Transform, we factorise the angular distance θ into angular speed ω and time t.
$-\theta$ is angular distance along the circle $(0-2 \pi)$.
- Since $\theta=\omega t$, we can write $e^{i \theta}=e^{i \omega t}$
- So $e^{i \omega t}$ determines how far we have moved along the circle in time t travelling at speed ω.
- By varying ω and t, we can compute how far a circular motion with speed ω will be at time t.

Fourier Transform

- Angular speed $\omega=2 \pi f$ where f is the frequency in cycles per unit time. (HW: Verify this. Hint: Just look at the definitions and/or units of ω and f.)
- So we can write $e^{i \theta}=e^{i \omega t}=e^{i 2 \pi f t}$
- So $e^{i 2 \pi f t}$ determines how far we have moved along the circle in time t travelling with a frequency f.
- By varying f and t, we can compute how far a circular motion with frequency f will be at time t.

Fourier Transform

- Let $\mathbf{x} \in \mathbb{R}^{N}$. That is $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{N-1}\right)^{\top}$. Obviously, $\mathbf{x} \in \mathbb{C}^{N}$ too.
- Assume signal repeats after every 1 second.
- Divide this 1 second into N slices.
- Assume value x_{n} occurs at time $t=n / N$ seconds.
- Position on the circle at time $\mathrm{t}=\mathrm{n} / \mathrm{N}$ is given by $e^{i \theta}=e^{i \omega t}=$ $e^{i 2 \pi f t}=e^{i 2 \pi f n / N}$
- This gives us N positions along a circular motion with frequency f.
- Let us denote them by the vector $\mathbf{u}_{f}=\left(e^{i 2 \pi f 0 / N}, e^{i 2 \pi f 1 / N}, \ldots, e^{i 2 \pi f(N-}\right.$
- Similarity of \mathbf{x} and \mathbf{u}_{f} can be computed by ...
- Inner-product $\mathbf{x}^{\top} \mathbf{u}_{f}$.

Fourier Transform - The Bigger Picture

- Project signal \mathbf{x} onto circular motions \mathbf{u}_{f} of different frequencies $f=0,1, \ldots, N-1$.
- Fourier coefficient for frequency f is $X_{f}=\mathbf{x}^{\top} \mathbf{u}_{f}$

Fourier Transform - Projection onto Circular Motion

- For the Fourier transform, the N dimensional signal vector \mathbf{x} is projected onto the circular basis vectors $e^{i 2 \pi f}$.
- Coefficient for basis vector with frequency f is the projection ($\left.\mathbf{x}^{\top} \boldsymbol{e}^{-i 2 \pi f}\right)$.

$$
\begin{aligned}
X_{f} & =\mathbf{x}^{T} e^{-i 2 \pi f} \\
& =x_{0} e^{-i 2 \pi f / N}+\cdots+x_{N-1} e^{-i 2 \pi \frac{N-1}{N}}
\end{aligned}
$$

- Do you notice something strange in the projection?

Fourier Transform - Projection onto Circular Motion

- Why the negative sign in the exponent?
- In order to measure lengths in any number space, a norm must be defined such that $|x|=\operatorname{sqrt}(x . x)=$ length of vector x.
- In the space of Complex numbers, inner product is defined as $x . y=x^{*} \operatorname{conj}(y)$ where $\operatorname{conj}(y)=\operatorname{Re}(y)-\operatorname{Im}(y) i=$ $|y| e^{-i \theta}$.
- HW: For a complex vector $f=\left(f_{1}, \ldots, f_{N}\right)$, compute f.f and f.conj(f). Which one yields the squared norm of f (given by $|f|^{2}=\left|f_{1}\right|^{2}+\ldots+\left|f_{N}\right|^{2}$)?
- The negative sign signifies conjugation of $e^{i 2 \pi f}$. So that the norm can be properly defined in Complex space.

Fourier Transform

$$
X_{f}=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_{n} e^{-i 2 \pi f n / N}=\frac{1}{\sqrt{N}} \mathbf{x}^{T} e^{-i 2 \pi f}
$$

Decompose the signal into its constituent frequencies from $f=0$ to $\mathrm{N}-1$.

Inverse Fourier Transform

$$
x_{n}=\frac{1}{\sqrt{N}} \sum_{f=0}^{N-1} X_{f} e^{i 2 \pi f n / N}
$$

Synthesize the signal from its constituent frequencies.

Orthonormality of the Fourier Basis

- The basis vectors for different frequencies f are orthonormal.
$\left[\begin{array}{c}\text { Orthogonality Condition } \\ e^{i 2 \pi \pi_{p} \frac{0}{N}} \\ \vdots \\ e^{i 2 \pi \pi_{p} \frac{N-1}{N}}\end{array}\right] \cdot\left[\begin{array}{c}e^{i 2 \pi \pi_{q} \frac{0}{N}} \\ \vdots \\ e^{i 22 \pi_{q} \frac{N-1}{N}}\end{array}\right]=0 \quad \forall p \neq q$
Normality Condition
$\left[\begin{array}{c}e^{i 2 \pi \pi_{p} \frac{0}{N}} \\ \vdots \\ e^{i 2 \pi \pi_{p} \frac{N-1}{N}}\end{array}\right] \cdot\left[\begin{array}{c}e^{i 2 \pi \pi_{p} \frac{0}{N}} \\ \vdots \\ e^{i 2 \pi \pi_{p} \frac{N-1}{N}}\end{array}\right]=1 \quad \forall p$
- So the different frequencies do not interfere with each other in representing the signal.
- HW: Prove orthonormality of Fourier basis.

Frequency Domain Filtering Pipeline

Filtered
Image

Frequency Domain Low-Pass Filtering (Smoothing)

a b c
FIGURE 4.50 (a) Original image (784×732 pixels). (b) Result of filtering using a GLPF with $D_{0}=100$. (c) Result of filtering using a GLPF with $D_{0}=80$. Note the reduction in fine skin lines in the magnified sections in (b) and (c).

Frequency Domain High-Pass Filtering (Sharpening)

Frequency Domain Band-Pass Filtering

Source: Gonzalez \& Woods

