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Curve Fitting Regularized Curve Fitting

Example: Polynomial Curve Fitting

Problem: Given N observations of input xi with corresponding
observations of output ti , find function f (x) that predicts t for a
new value of x .
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Curve Fitting Regularized Curve Fitting

First, let’s generate some data.

N=10;
x=0:1/(N-1):1;
t=sin(2*pi*x);
plot(x,t,’o’);

Notice that the data is generated through the function sin(2πx).
Real-world observations are always ’noisy’.
Let’s add some noise to the data

n=randn(1,N)*0.3;
t=t+n;
plot(x,t,’o’);
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Curve Fitting Regularized Curve Fitting

Real-world Data

Real-world data has 2 important properties
1. underlying regularity,
2. individual observations are corrupted by noise.

Learning corresponds to discovering the underlying regularity of
data (the sin(·) function in our example).
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Curve Fitting Regularized Curve Fitting

Polynomial curve fitting

I We will fit the points (x , t) using a polynomial function

y(x ,w) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑
j=0

wjx
j

where M is the order of the polynomial.
I Function y(x ,w) is a

I non-linear function of the input x , but
I a linear function of the parameters w.

I So our model y(x ,w) is a linear model.
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Curve Fitting Regularized Curve Fitting

Polynomial curve fitting

I Fitting corresponds to finding the optimal w. We denote it as
w∗.

I Optimal w∗ can be found by minimising an error function

E (w) =
1
2

N∑
n=1

{y(xn,w)− tn}2

I Why does minimising E (w) make sense?
I Can E (w) ever be negative?
I Can E (w) ever be zero?
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Curve Fitting Regularized Curve Fitting

Geometric interpratation of the sum-of-squares error function.

Nazar Khan Machine Learning



Curve Fitting Regularized Curve Fitting
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Curve Fitting Regularized Curve Fitting

Over-fitting

I Lower order polynomials can’t capture the variation in data.
I Higher order leads to over-fitting.

I Fitted polynomial passes exactly through each data point.
I But it oscillates wildly in-between.
I Gives a very poor representation of the real underlying

function.

I Over-fitting is bad because it gives bad generalization.
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Curve Fitting Regularized Curve Fitting

Over-fitting

I To check generalization performance of a certain w∗, compute
E (w∗) on a new test set.

I Alternative performance measure: root-mean-square error
(RMS)

ERMS =

√
2E (w∗)

N

I Mean ensures datasets of different sizes are treated equally.
(How?)

I Square-root brings the squared error scale back to the scale of
the target variable t.
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Curve Fitting Regularized Curve Fitting

Root-mean-square error on training and test set for various
polynomial orders M.
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Curve Fitting Regularized Curve Fitting

Paradox?

I A polynomial of order M contains all polynomials of lower
order.

I So higher order should always be better than lower order.
I But, it’s not better. Why?

I Because higher order polynomial starts fitting the noise instead
of the underlying function.
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Curve Fitting Regularized Curve Fitting

Over-fitting

I Typical magnitude of the polynomial coefficients is increasing
dramatically as M increases.

I This is a sign of over-fitting.
I The polynomial is trying to fit the data points exactly by

having larger coefficients.
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Curve Fitting Regularized Curve Fitting

Over-fitting

I Large M =⇒ more flexibility =⇒ more tuning to noise.
I But, if we have more data, then over-fitting is reduced.

I Fitted polynomials of order M = 9 with N = 15 and N = 100
data points. More data reduces the effect of over-fitting.

I Rough heuristic to avoid over-fitting: Number of data points
should be greater than k |w| where k is some multiple like 5 or
10.
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Curve Fitting Regularized Curve Fitting

How to avoid over-fitting

I Since large coefficients =⇒ over-fitting, discourage large
coefficents in w.

Ẽ (w) =
1
2

N∑
n=1

{y(xn,w)− tn}2 +
λ

2
||w||2

where ||w||2 = wTw = w2
0 + w2

1 + · · ·+ w2
M and λ controls

the relative importance of the regularizer compared to the
error term.

I Also called regularization, shrinkage, weight-decay.
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Curve Fitting Regularized Curve Fitting

For a polynomial of order 9

For λ = e−18 For λ = 1
No over-fitting Too much smoothing (no fitting)
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Curve Fitting Regularized Curve Fitting

Effect of regularization

I As λ increases, the typical magnitude of coefficients gets
smaller.

I We go from over-fitting (λ = 0) to no over-fitting (λ = e−18)
to poor fitting (λ = 1).

I Since M = 9 is fixed, regularization controls the degree of
over-fitting.
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Curve Fitting Regularized Curve Fitting

Graph of root-mean-square (RMS) error of fitting the M = 9
polynomial as λ is increased.
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Curve Fitting Regularized Curve Fitting

How to avoid over-fitting

I A more principled approach to control over-fitting is the
Bayesian approach (to be covered later).

I Determines the effective number of parameters automatically.

I We need the machinery of probability to understand the
Bayesian approach.

I Probability theory also offers a more principled approach for
our polynomial fitting example.

I Will be covered in the next lecture.
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