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Gaussian Distribution

Gaussian Distribution

I Known as the queen of distributions.
I Also called the Normal distribution since it models the

distribution of almost all natural phenomenon.
I For continuous variables.

N (x |µ, σ2) =
1√
2πσ2

exp
{
− 1
2σ2 (x − µ)

2
}

where µ is the mean, σ2 is the variance and σ is the
standard deviation.

I Reciprocal of variance, β = 1
σ2 is called precision.
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Gaussian Distribution

Gaussian Distribution

I Multivariate form for D − dimensional vector x of continuous
variables

N (x|µ,Σ) =
1√

(2π)D |Σ|
exp
{
−1
2
(x− µ)TΣ−1(x− µ)

}
where the D × D matrix Σ is called the covariance matrix
and |Σ| is its determinant.
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Gaussian Distribution

Independent and Identically Distributed

I Let D = (x1, . . . , xN) be a set of N random numbers.
I If value of any xi does not affect the value of any other xj ,

then the xi s are said to be independent.
I If each xi follows the same distribution, then the xi s are said

to be identically distributed.
I Both properties combined are abbreviated as i.i.d.
I Assuming the xi s are i.i.d under N (µ, σ2)

p(D|µ, σ2) =
N∏

n=1

N (xn|µ, σ2)

I This is known as the likelihood function for the Gaussian.
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Gaussian Distribution

Fitting a Gaussian

I Assuming we have i.i.d data D = (x1, . . . , xN), how can we
find the parameters of the Gaussian distribution that generated
it?

I Find the (µ, σ2) that maximise the likelihood. This is
known as the maximum likelihood (ML) approach.

I Since logarithm is a monotonically increasing function,
maximising the log is equivalent to maximising the function.

I Logarithm of the Gaussian
I is a simpler function, and
I is numerically superior (consider taking product of very small

probabilities versus taking the sum of their logarithms).
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Gaussian Distribution

Log Likelihood

I Log likelihood of Gaussian becomes

ln p(D|µ, σ2) = − 1
2σ2

N∑
n=1

(x − µ)2 − N

2
lnσ2 − N

2
ln(2π)

I Maximising w.r.t µ, we get

µML =
1
N

N∑
n=1

xn

I Maximising w.r.t σ2, we get

σ2
ML =

1
N

N∑
n=1

(xn − µML)
2
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Gaussian Distribution

Bias of Maximum Likelihood

I Exercise 1.12
I Since E [µML] = µ, ML estimates the mean correctly.
I But since E

[
σ2
ML

]
=
(
N−1
N

)
σ2,

ML underestimates the variance by a factor N−1
N .

I This phenomenon is called bias and lies at the root of
over-fitting.
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Gaussian Distribution

Polynomial Curve Fitting
A Probabilistic Perspective

I Our earlier treatment was via error minimization.
I Now we take a probabilistic perspective.
I The real goal: make accurate prediction t for new input x

given training data (x, t).
I Prediction implies uncertainty. Therefore, target value can be

modelled via a probability distribution.
I We assume that given x , the target variable t has a Gaussian

distribution.

p(t|x ,w, β) = N (t|y(x ,w), β−1) (1)

=
1√
2πσ2

exp
{
− 1
2σ2 (t − y(x ,w))2

}
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Gaussian Distribution

Polynomial Curve Fitting
A Probabilistic Perspective

I Knowns: Training set (x, t).
I Unknowns: Parameters w and β.
I Assuming training data is i.i.d likelihood function becomes

p(t|x,w, β) =
N∏

n=1

N (tn|y(xn,w), β−1)

I Log of likelihood becomes

ln p(t|x,w, β) = −β
2

N∑
n=1

{y(xn,w)−tn}2+
N

2
lnβ−1−N

2
ln(2π)

I Maximization of likelihood w.r.t w is equivalent to
minimization of 1

2
∑N

n=1{y(xn,w)− tn}2.
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Gaussian Distribution

Polynomial Curve Fitting
A Probabilistic Perspective

I So, assuming t ∼ N , ML estimation leads to sum-of-squared
errors minimisation.

I Equivalently, minimising sum-of-squared errors implies t ∼ N
(i.e., noise was normally distributed).
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Gaussian Distribution

Polynomial Curve Fitting
A Probabilistic Perspective

I wML and βML yields a probability distribution over the
prediction t.

p(t|x,wML, βML) =
N∏

n=1

N (tn|y(xn,wML), β
−1
ML)

I The polynomial function y(x ,wML) alone only gives a point
estimate of t.
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