CS-567 Machine Learning

Nazar Khan

PUCIT

Lecture 05 Probabilistic Curve Fitting

- Known as the queen of distributions.
- Also called the Normal distribution since it models the distribution of almost all natural phenomenon.
- ► For continuous variables.

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

where μ is the mean, σ^2 is the variance and σ is the standard deviation.

• Reciprocal of variance, $\beta = \frac{1}{\sigma^2}$ is called **precision**.

 Multivariate form for D – dimensional vector x of continuous variables

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^{D}|\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

where the $D \times D$ matrix Σ is called the **covariance matrix** and $|\Sigma|$ is its determinant.

Independent and Identically Distributed

- Let $\mathcal{D} = (x_1, \ldots, x_N)$ be a set of N random numbers.
- If value of any x_i does not affect the value of any other x_j, then the x_is are said to be independent.
- ► If each *x_i* follows the same distribution, then the *x_i*s are said to be **identically distributed**.
- Both properties combined are abbreviated as i.i.d.
- Assuming the x_i s are i.i.d under $\mathcal{N}(\mu, \sigma^2)$

$$p(\mathcal{D}|\mu,\sigma^2) = \prod_{n=1}^N \mathcal{N}(x_n|\mu,\sigma^2)$$

> This is known as the **likelihood function** for the Gaussian.

Fitting a Gaussian

- ► Assuming we have i.i.d data D = (x₁,...,x_N), how can we find the parameters of the Gaussian distribution that generated it?
- Find the (μ, σ²) that maximise the likelihood. This is known as the maximum likelihood (ML) approach.
- Since logarithm is a monotonically increasing function, maximising the log is equivalent to maximising the function.
- Logarithm of the Gaussian
 - is a simpler function, and
 - is numerically superior (consider taking product of very small probabilities versus taking the sum of their logarithms).

Log Likelihood

Log likelihood of Gaussian becomes

$$\ln p(\mathcal{D}|\mu,\sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x-\mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

• Maximising w.r.t μ , we get

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

• Maximising w.r.t σ^2 , we get

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2$$

Bias of Maximum Likelihood

Exercise 1.12

- Since $\mathbb{E}[\mu_{ML}] = \mu$, ML estimates the mean correctly.
- ► But since $\mathbb{E}\left[\sigma_{ML}^2\right] = \left(\frac{N-1}{N}\right)\sigma^2$, <u>ML underestimates the variance</u> by a factor $\frac{N-1}{N}$.
- This phenomenon is called bias and lies at the root of over-fitting.

Polynomial Curve Fitting A Probabilistic Perspective

- Our earlier treatment was via error minimization.
- Now we take a probabilistic perspective.
- The real goal: make accurate prediction t for new input x given training data (x, t).
- Prediction implies uncertainty. Therefore, target value can be modelled via a probability distribution.
- ▶ We assume that given *x*, the target variable *t* has a Gaussian distribution.

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$
(1)
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(t - y(x, \mathbf{w}))^2\right\}$$

Polynomial Curve Fitting A Probabilistic Perspective

- ► Knowns: Training set (x, t).
- Unknowns: Parameters **w** and β .
- Assuming training data is i.i.d likelihood function becomes

$$p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n,\mathbf{w}),\beta^{-1})$$

Log of likelihood becomes

$$\ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n,\mathbf{w}) - t_n\}^2 + \frac{N}{2} \ln \beta^{-1} - \frac{N}{2} \ln(2\pi)$$

Maximization of likelihood w.r.t w is equivalent to minimization of ¹/₂ ∑^N_{n=1}{y(x_n, w) − t_n}².

Polynomial Curve Fitting A Probabilistic Perspective

- ► So, assuming t ~ N, ML estimation leads to sum-of-squared errors minimisation.
- ► Equivalently, minimising sum-of-squared errors implies t ~ N (*i.e.*, noise was normally distributed).

Polynomial Curve Fitting A Probabilistic Perspective

• \mathbf{w}_{ML} and β_{ML} yields a probability distribution over the prediction *t*.

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}_{ML}, \beta_{ML}) = \prod_{n=1}^{N} \mathcal{N}(t_n | y(\mathbf{x}_n, \mathbf{w}_{ML}), \beta_{ML}^{-1})$$

► The polynomial function y(x, w_{ML}) alone only gives a point estimate of t.