CS-567 Machine Learning

Nazar Khan

PUCIT

Lecture 06 Bayesian Curve Fitting

Polynomial Curve Fitting Bayesian Perspective

- ML estimation of w maximises the likelihood function p(t|x, w) to find the w for which the observed data is most likely.
- ▶ By using a prior $p(\mathbf{w})$, we can employ Bayes' theorem

$$\underbrace{\rho(\mathbf{w}|\mathbf{x},\mathbf{t})}_{\text{posterior}} \propto \underbrace{\rho(\mathbf{t}|\mathbf{x},\mathbf{w})}_{\text{likelihood}} \underbrace{\rho(\mathbf{w})}_{\text{prior}}$$

- Now maximise the posterior probability $p(\mathbf{w}|\mathbf{x}, \mathbf{t})$ to find the most probable \mathbf{w} given the data (\mathbf{x}, \mathbf{t}) .
- ► This technique is called maximum posterior or MAP.

Polynomial Curve Fitting Bayesian Perspective

▶ Let the prior on parameters w be a zero-mean Gaussian

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2}\right)^{(M+1)/2} \exp\{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}\}$$

Negative logarithm of posterior becomes

$$-\ln p(\mathbf{w}|\mathbf{x},\mathbf{t},\alpha,\beta) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n,\mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w}$$

which is the same as the *regularized sum-of-squares error* function with $\lambda = \alpha/\beta$.

Polynomial Curve Fitting Bayesian Perspective

- ▶ So, assuming $t \sim \mathcal{N}$ and $\mathbf{w} \sim \mathcal{N}$, MAP estimation leads to regularized sum-of-squared errors minimisation.
- ▶ Equivalently, minimising regularized sum-of-squared errors implies $t \sim \mathcal{N}$ and $\mathbf{w} \sim \mathcal{N}$ (*i.e.*, noise and the parameters were normally distributed).
- ▶ If precision on noise and parameters were α and β respectively, then regularizer $\lambda = \alpha/\beta$.
- ▶ MAP estimation allows us to determine optimal α and β whereas regularised-SSE minimisation depends on a user-given λ .

Programming Assignment 1 Curve Fitting

- ▶ In this assignment, we will learn how to fit a polynomial to data points $\{x, t\}_1^N$ using
 - 1. Maximum Likelihood (ML) estimation find \mathbf{w} that maximises $p(T|X,\mathbf{w})$.
 - 2. Maximum Posterior (MAP) estimation find \mathbf{w} that maximises $p(\mathbf{w}|X,T)$
- ► The goal is to reproduce Figures 1.4 till 1.7 from Chapter 1 of Bishop's book.
- ▶ The main Matlab files in this assignment are
 - ▶ generate_data.m generates data from the $sin(2\pi)$ function and adds random noise.
 - evaluate_polynomial.m evaluates polynomial w at points in vector x.
 - ► fit_polynomial_ML.m fits a polynomial to data X, T via Maximum Likelihood (ML) estimation.

Programming Assignment 1 Curve Fitting

- ► fit_polynomial_MAP.m fits a polynomial to data X, T via Maximum Posterior (MAP) estimation.
- You have to fill in the missing pieces of code in
 - evaluate_polynomial.m
 - fit_polynomial_ML.m
 - fit_polynomial_MAP.m
- ➤ To generate all results required for this assignment, run the provided script get_all_results.m.
- ➤ Submission: Paste your_roll_number_curve_fitting.zip to \\printsrv\Teacher Data\Dr.Nazar Khan\Teaching\Fall2016\CS 567 Machine Learning\Submissions\PA1
- ▶ Deadline: Wednesday, December 07, 2016 before 5:30 pm.
- ► The .zip file should ONLY contain

Programming Assignment 1

Curve Fitting

- evaluate_polynomial.m
- ► fit_polynomial_ML.m
- fit_polynomial_MAP.m

and

- ► Figure_1_4.png
- ► Figure_1_5.png
- Figure_1_6.png
- ▶ Figure_1_7.png
- polynomial_fitting_ML_VS_MAP.png