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Intro Misclassification Loss

Decision Theory

I Probability Theory: Mathematical framework for quantifying
uncertainty.

I Decision Theory: Combines with probability theory to make
optimal decisions in uncertain scenarios.

I Inference: Determining p(x , t) from training data.
I Decision: Find a particular t.
I p(x , t) is the most complete description of the data.

I But a decision still needs to be made.
I This decision is generally very simple after inference.
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In this lecture . . .

I Decisions to ensure minimum misclassifications.
I Decisions to ensure minimum loss.
I Decisions with multiple models.
I Generative vs. discriminative vs. discriminant function

approaches.
I Decision theory for regression.
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Decision Theory
Example

I Given X-ray image x, we want to know if the patient has a
certain disease or not.

I Let t = 0 correspond to the disease class, denoted by C1.
I Let t = 1 correspond to the non-disease class, denoted by C2.
I Using Bayes’ theorem

p(Ck |x) =
p(x|Ck)p(Ck)

p(x)

I All quantities can be obtained from p(x, t) either via
marginalization or conditioning.

I Intuitivley, to minimise chance of error, assign x to class with
highest posterior.
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Minimizing Misclassifications

I Any decision rule places inputs x into decision regions.
I If my decision rule places x in region R1, I will say that x

belongs to class C1.
I The probability of x belonging to class C1 is p(x, C1). This is

the probability of my decision being correct.
I Similarly, the probability of my decision being incorrect is

p(x, C2).
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Minimizing Misclassifications

I When one input x has been decided upon

p(mistake on x) = p(x placed in region 1 and belongs to class 2
OR

x placed in region 2 and belongs to class 1)
= p(x ∈ R1, C2) + p(x ∈ R2, C1)

I When all inputs have been decided upon

p(mistake) =
∫
R1

p(x, C2)dx +

∫
R2

p(x, C1)dx
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Minimizing Misclassifications

I Individual p(mistake on x) is minimized when x is placed in
the region Rk with the highest p(x, Ck).

I Overall p(mistake) is minimized when each x is placed in the
region Rk with the highest p(x, Ck).

I Highest p(x, Ck) =⇒ highest p(Ck |x)p(x) =⇒ highest
p(Ck |x).

I For K classes also, p(mistake) is minimised by placing each x
in the region Rk with highest posterior p(Ck |x). This is known
as the Bayesian decision rule.
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Minimizing Loss

I Suppose we are classifying plant leaves as poisonous or not.
I Are the following mistakes equal?

I Poisonous leaf classified as non-poisonous.
I Non-poisonous leaf classified as poisonous.

I We can assign a loss value to each mistake.


Classified as
poisonous non-poisonous

poisonous 0 1000
non-poisonous 1 0


I Lkj is the loss incurred by classifying a class k item as class j .
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Minimizing Loss
Finding the optimal decision rule

I Let Rj consist of all points assigned to class Cj .
I The loss of assigning a point belonging to class Ck to the class
Cj is denoted by Lkj .

I Probability of points assigned to class Cj belonging to class Ck
can be written as ∫

Rj

p(x, Ck)dx Why?

I Note that we do not know which class any x belongs to. So
we are using the probabilities of belonging to each class.
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Minimizing Loss
Finding the optimal decision rule

I Expected loss E[Lkj ] of assigning points belonging to Ck to
class Cj can be written as

E[Lkj ] =
∫
Rj

Lkjp(x, Ck)dx Why?

I Overall expected loss due to misclassifications can be written
as

E[L] =
∑
k

∑
j

∫
Rj

Lkjp(x, Ck)dx Why?

I Expected loss of assigning a new point x to class Cj can be
written as ∑

k

Lkjp(x, Ck) Why?
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Minimizing Loss
Finding the optimal decision rule

I So to minimise the overall expected loss, assign each x to the
class Cj for which expected loss

∑
k Lkjp(x, Ck) is minimum.

I Since p(x,Ck) ∝ p(Ck |x), this rule is the same as assigning
each x to the class Cj for which expected loss

∑
k Lkjp(Ck |x) is

minimum
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Minimizing Loss
Summary

I When mistakes are not equally bad, instead of minimising the
number of mistakes, it is better to minimize the expected
loss.

E[L] =
∑
k

∑
j

Lkjp(Lkj)

=
∑
k

∑
j

Lkj

∫
Rj

p(x, Ck)dx

I To minimise overall expected loss, place each x in the region j
for which expected loss E[Lj ] is minimum

E[Lj ] =
∑
k

Lkjp(Ck |x)

is minimum.
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Reject Option

I Classification error is high when p(x, Ck) (or equivalently
p(Ck |x)) is comparable for all k .

I Uncertainty because no class is a clear winner.
I Reject option: Avoid making a decision for uncertain

scenarios.
I Do not make a decision for x for which largest p(Ck |x) ≤ θ.
I Loss matrix can include loss of reject option too.


Classified as
poisonous non-poisonous reject

poisonous 0 1000 100
non-poisonous 1 0 200


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3 Approaches for Solving Decision Problems

1. Generative: Infer posterior p(Ck |x)
I either by inferring p(x|Ck) and p(x) and using Bayes’ theorem,
I or by inferring p(x, Ck) and marginalizing.
I Called generative because p(x|Ck) and/or p(x, Ck) allow us to

generate new x’s.
2. Discriminative: Model the posterior p(Ck |x) directly.

I If decision depends on posterior, then no need to model the
joint distribution.

3. Discriminant Function: Just learn a discriminant function
that maps x directly to a class label.

I f(x)=0 for class C1.
I f(x)=1 for class C2.
I No probabilities
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Generative Approach

I For high dimensional x, estimating p(x|Ck) requires large
training set.

I p(x) allows outlier detection. Also called novelty detection.
I Estimating p(Ck) is easy – just use fraction of training data for

each class.
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Discriminant Functions

I Directly learn the decision boundaries.
I But now we don’t have the posterior probabilities.
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Benefits of knowing the posteriors p(Ck |x)

I If loss matrix changes, decision rule can be trivially revised.
Discriminant functions would require retraining.

I Reject option can be used.
I Different models can be combined systematically.
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Combining Models

Let’s say we have X-ray images xI and blood-tests xB and want to
classify into disease or not disease.

I Method 1: Form x =

[
xI
xB

]
and learn classifier for x.

I Method 2: Learn p(Ck |xI ) and p(Ck |xB).
I Assuming conditional independence

p(xI , xB |Ck) = p(xI |Ck)p(xB |Ck)

p(Ck |xI , xB) ∝ p(xI , xB |Ck)p(Ck)
∝ p(xI |Ck)p(xB |Ck)p(Ck)

∝ p(Ck |xI )p(Ck |xB)
p(Ck)

I Normalise r.h.s using
∑

k p(Ck |xI , xB).
I The conditional independence assumption is also known as the

naive Bayes model.
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Loss functions for regression

I So far we have used decision theory for classification problems.
I Loss functions can also be defined for regression problems.
I For example, for the polynomial fitting problem a loss function

can be described as L(t, y(x)) = (y(x)− t)2.
I Expected loss can be written as

E [L] =

∫ ∫
(y(x)− t)2p(x, t)dxdt

I The minimising polynomial function can be written using
calculus of variations as

y(x) =
∫
tp(x, t)dt
p(x)

=

∫
tp(t|x)dt = Et [t|x]

which is the expected value of t given x. Also called the
regression function.

I For multivariable outputs t, optimal y(x) = Et[t|x]
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3 Approaches for Solving Regression Problems

I Similar to the case of classification problems, there are 3
approaches to solve regression problems.

1. Infer p(x, t), marginalize to get p(x), normalize to get p(t|x)
and use it to compute conditional expectation Et [t|x].

2. Infer p(t|x) directly and use it to compute conditional
expectation Et [t|x].

3. Find regression function y(x) directly.
I The relative merits of each approach are similar to those of

classification approaches.
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Summary

I Decision rule to ensure minimum misclassifications is to assign
to class with highest posterior p(Ck |x).

I Decision rule to ensure minimum loss is to assign to class with
lowest expected loss.

I Though they are derived mathematically, both are common
sense rules.

I Reject option can be used for highly uncertain scenarios.
I Multiple models can be combined via Naive Bayes assumption.
I Generative vs. discriminative vs. discriminant function

approaches.
I Decision theory for regression problems leads to similar

conclusions as classification.
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