CS 565 Computer Vision

Nazar Khan

Lectures 12, 13 and 14: Spatial
Transformations



Transformations

 We will study 2D spatial transformations

T: R2—>R2
o Affine transformations include
— Scaling
— Rotation
— Shear
— Translation

e Can be carried out via matrix-vector
multiplications.



Matrices as linear operators

e Every matrix is a linear operator.

* Every matrix-vector multiplication represents
a linear operation.

i g ottd R
a, a,|VY a,X+a,y y'

e Alternatively, xX’=Mx.



Scaling

Rotation

Shear
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Transformations
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Translation is not linear

Translation is not a linear operation.
— Try finding a matrix that takes [x;y] to [x+10;y].

No matrix in R?Z corresponds to a translation.

However, a 3x3 matrix can be used to perform

2D translation. [t 0 Trx]
0 1 Tr |y

O 0 1 1
So if we move to a higher dimensional space,
we can make translations linear.




Projective Space P2

Appending 1 as a 3" coordinate corresponds
to homogenous coordinates.

-

R2—P?2 where P? is the so-called projective
space.

Dimensionality of P?is 3.
Dimensionality of P"is n+1.



Projective Space [P

e P2 contains homogenised points from R2

e We go from R? to P2 by appending a 3™
coordinate 1.
—[x;vy] 2 [x;y; w] where w=1.

e We go back from P2 to R? by dividing by 3"
coordinate and removing it.
—[x;y;w] 2 [X/w;y/w; w/w] 2 [x/w; y/w]



P2 vs. R3

e Both P2 and R3 are 3-dimensional.
e But P? does not contain [0; 0 ; 0]. P?=R3\[0;0;0].
= Because [0;0;0] = [0/0:;0/0:0/0] = [NaN;NaN].
= So [0;0;0] does not correspond to any point in R2.



2D Transformations

rotation translation
shear
scaling
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2D Transformations

» Basic operation of all 2D transformations is simple

Point to be transformed: [x,y ]

Point after transformation: [x’,y’ ]
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2D Transformations
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In general, scaling transformation is given by

s 0
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2D Transformations

(0,0) (0,1)

(1,1)

(1,0 (1,1)

Original

Transformed
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Shear 1n x-direction

o LA

» X-coordinate moves with an amount proportional to
the y-coordinate

Shear 1n y-direction

1 O x X
e 1]y ex+y

» y-coordinate moves with an amount proportional to
the x-coordinate
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2D Transformations

-1 0 1 0
0 1 0 -1
0"

=9
_O _1_

Reflection is negative scaling
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Rotation

y; = Rsin u{

X, = Rcos(€ + @)
v, = Rsin(6+ @)

X, =Rcos@cos@—Rsinésin @
y, =Rsiné@cos @+ Rcosfsin @

X, =X, 0860~y sinf
vy, =Xx,8In@+ y, cosb

¢ [xz} {cos 6 —sin 9}[;{1}
] X L] : s al L]
' Y, sin@  cosé |y,
N J
v

X, =Rcosg
R

R is rotation by 6 counterclockwise about origin
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Rotation

» Rotation Matrix has some special properties
Each row/column has norm of | [prove]

Each row/column is orthogonal to the other [prove]
So Rotation matrix is an orthonormal matrix
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2D Translation

= Point in 2D given by (x, y,)
= Translated by (d, d)

Courtesy: Sohaib Khan



Translation

» In matrix form

x, | [1 0 d |x

-}}2 = O I d_r -}11

] O 0 1|1
SRR

T

» We could not have written T multiplicatively without
using homogeneous coordinates
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Basic 2D Transformations

cos@® —sinf O] s. 0 0

siné cos@é 0 0 s 0

0 0L 0 0 1
1 0 d._ 1 e O 1 0 0
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00 1 00 1] |0 0 1
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Inverse Transforms
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Inverse Transforms

R
K - — 0
s. 0 0 N
=0 s 0 s'=|0o L
1 S,
0 - 0 0

SSi=1

nat is Inverse of Rotation?

nat is inverse of Translation?

nat is inverse of Shear in X-direction?
nat is inverse of Shear in Y-direciton?

=S ===




Rotation about an Arbitrary Point

4 =




Concatenation or Composition of
Transformations

= Ve can concatenate a large number of
transformations into a single transformation

= P, = T4 S Re Py
= Rules of matrix multiplication apply

= If we do not use homogeneous coordinates, what
might be the problem here!?
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Order of Transformations
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Order of Transformations

i
Scaled Rotated

Original

Rotated
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Order of Transformations

» Rotation/Scaling/Shear, followed
1 0 b

0 1

0 0

b,

1

a, d,
a, da,
0 0

by Translation
0] |a a, b |
Ol=lay, a, Db,
1y {0 0 1

» Translation, followed by Rotation/Scaling/Shear
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Affine Transformation

= Encodes rotation, scaling, translation and shear
X, =ax,+a,y, +b,
Y2 =asX, +a,y, +b,

= 6 parameters
= Linear transformation

= Parallel lines are preserved [proof ?]

Courtesy: Sohaib Khan



Recovering Best Affine Transformation

» Input: we are given some correspondences

» Output: Compute a, — ag which relate the images

» This is an optimization problem... Find the ‘best’ set of
parameters, given the input data

Courtesy: Sohaib Khan



Recovering Best Affine Transformation

* Given 3 corresponding points X, <> X;, X, <> X,
X; <> X;" where x;” = Tx,

* Find the 6 parameters [a;;3,;35;3,;3c;3,] of the r

affine transformation T that maps x to x’.

X'=aX+8,y+8; gomymamrmt X Y 1 000
y'=a,X+ay+a, as y' 0 0 0 x vy 1
H.W. Verify.

e 1 correspondence yields 2 equations. So 3
correspondences will yield 6 equations which
are enough to solve for 6 unknown parameters.
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Recovering Best Affine Transformation

The 3 correspondences can be written as

(x, vy, 1 0 0 O0fa
0O 0 0 x vy, 1]a
X, ¥ 1 0 0 O0Ofa,
0O 0 0 x, vy, 1}a,
X, Y31 0 0 Ofa
10 0 0 x vy, 1]a)]
So v* = A'lh. A R

X
Yy
X3
Ys

4

X3

Vs

[ —
b

What are the sizes?

But Av=Db only for non-noisy measurements x and x'.
Also, this works only when A is square and non-

singular.



Recovering Best Affine Transformation

When

1. measurements are noisy, and/or

2. Ais non-square (more than 3 correspondences)

we want to find v* such that Av* is as close as
possible to b. That is,

v* =arg min, | |Av-b]| |?

which is a least-squares problem.



Recovering Best Affine Transformation

At v*
V. {l|1Av-b| |2} = 0

= V, {(Av-b)"(Av-b)} = 0

=> 2A"(Av*-b) = 0 € Prove this. Not as simple as it looks.

= AT(Av*-b) =0

= ATAv*-ATb = 0

= v* = (ATA)1ATb = A'b
The matrix A" = (ATA)1AT is known as the
pseudo-inverse of A.



Recovering Best Affine Transformation

Concise algorithm

Input: N point correspondences x. <> X/’

1. Fill in the 2N x 6 matrix A using the x.

Fill in the 2N x 1 vector b using the x/’
Compute 6 x 6 pseudo-inverse A" = (ATA)1AT

Compute optimal affine transformation
parameters as v* = A'b

> W N



2D Displacement Models

_ X'=x+b,
» Translation: |
y'=y+ b2
.. X'=xcos@—ysmmb+b

» Rigid: | * ‘

y'=xsin@+ ycos@+0b,

_ X'=ax+a,y+Db,

» Affine:

v=a,x+a,y+b,

a,x+a,y+b,

'

» Projective:  x

cx+c,y+l1

e a,x+a,y+b,

cx+c,y+1
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& 2D Affine Warping

Courtesy: Sohaib Khan



i Warping

= Inputs:

= Image X

= Affine Transformation A =[a, &, b, & a, b,]7
= Output:

= Generate X' such that X' = AX

= Obvious Process:

= For each pixel in X
= Apply transformation

= At that location in X', put the same color as at the original
location in X

= Problems?

Courtesy: Sohaib Khan



i Warping

= [his will leave holes...

= Because every pixel does not map to an integer
location!

= Reverse Transformation

= For each integer location in X’
= Apply inverse mapping
Problem?

= Will not result in answers at integer locations,
in general

= Bilinearly interpolate from 4 neighbors

Courtesy: Sohaib Khan



* 2D Bilinear Interpolation

= Four nearest points = (M)
of x,y .

(LX):L J’l(x J’) (_ ;) X(x,y)

where X = 1Int(x)




* Bilinear Interpolation




Beyond Affine — Projective

Transformation

Last row of affine transformation
matrix is always [0 0 1].

If this condition is relaxed we obtain
the so-called projective
transformation.

Also called homography or
collineation.

— Lines are mapped to lines.
8 degrees of freedom. Why?
Linear in P2. ,

Non-linear in R? because 3™ coordinate
of X" is not guaranteed to be 1.

X +

N,y +

X+
N, X+

.Y +
Ny +

N X +

Y +

D I )
o




Projective Transformation

If acP2 and beP? correspond to the same point in
Cartesian space, then we say that a and b are
projectively equivalent.

— We write this as a=b.

In projective space, v = k(v) for all k#0 because both
correspond to the same point in Cartesian space.

So k(Hv) = Hv = kHv = Hv = kH = H.

Let H'=H/H(3,3). Clearly, H’(3,3)=1 and therefore H’ has
8 free parameters.

But since H" = H, H must also have 8 free parameters.




Recovering Best Projective Transform

* Given N corresponding points X, <> X,’, X, <>

le, cer) XN <> XN, Where Xi' = HXi<j:|' Why projectively equivalent?

* Find the 8 parameters [h;h,;h;;h,;he;he;hoshgl
of the projective transformation H that maps x
to x’.

e 8 unknown parameters will require 8
equations.



Recovering Best Projective Transform

* X = Hx, = both vectors point in the same
direction.

* So cross-product x.” x Hx, = 05, ,.
* Recall that

‘ab,—ab,| [ 0 -a, a, |[b
axb=| ab —ab, |=| a, 0 -a |b,|=[a]lb
_a1b2 _aZbl_ —a, a 0 | 03




Recovering Best Projective Transform

Let h' denote the it" row of H. By default it is a
column vector of size 3 x 1.

h'” denotes the it" row written asa 1 x 3 row
vector.

Let x." = [X:"; Vi 7 W;’]

Nt X y'h*' x. —wh?"x
H . 2T ' H _ rth 3T
T X,  xh* X, -y x;




Recovering Best Projective Transform

[ 13T na 2T
yih™ X; —wih® x;
X! xHx, =| wh''x, —xh*'x. | =0
Na 2T N~ 1T
1T R3 1 GTIR2
=|wx h'—xx'h°| =0 sincea'b=b'a
I, .2 ', Tkl
0" -—wx = yx n'
=| WX/ 0" -xx'| |h*| =0
', T 1, T T 3
_yixi XiXI O _3><9_q J19x1




Recovering Best Projective Transform

* Correspondence x; <> x.’ yields 3 equations Ah=0.

— However, it can be shown that matrix A, has 2 linearly
independent rows (since X A: + y/A? + WA’ = 0)

— So one row can be discarded.

— Through an abuse of notation, let us denote the
resulting 2 x 9 matrix as A, also.

 So one correspondence yields 2 equations.

* Since 8 unknowns will require 8 equations, we
will need N>4 corresponding points.

— The points must be non-collinear.



Recovering Best Projective Transform

e This will yield the system Ah=0 where size of A is
2N x 9.

— |t can be shown that rank(A)=8 and dim(A)=9.

— So nullity of Ais 1 and therefore h can be found as the
null space of A.

— However, when measurements contain noise or N>4,
then Ah0 and it is better to find h by minimising
| [Ah[].
— This can be done via singular value decomposition
e [U,DV]=svd(A)
e his the last column of matrix V.




Recovering Best Projective Transform

Concise algorithm

Input: N point correspondences x. <> X/’

1. Fill in the 2N x 9 matrix A using the x, and x

2. [U,DV]=svd(A)

3. Optimal projective transformation
parameters h* lie in last column of matrix V.

This algorithm is known as the Direct Linear Transform (DLT).
For some practical tips, please refer to slides 14—17 from
http://www.ele.puc-rio.br/~visao/Topicos/Homographies.pdf



http://www.ele.puc-rio.br/~visao/Topicos/Homographies.pdf�

Projective Warping

e Same as affine warping.

e Just remember to move back from P2 to R2.
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