
CS 565 Computer Vision

Nazar Khan
Lectures 12, 13 and 14: Spatial 

Transformations



Transformations

• We will study 2D spatial transformations
T: ℝ2→ℝ2

• Affine transformations include
– Scaling
– Rotation
– Shear
– Translation

• Can be carried out via matrix-vector 
multiplications.



Matrices as linear operators

• Every matrix is a linear operator.
• Every matrix-vector multiplication represents 

a linear operation.

• Alternatively, x’=Mx.
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Transformations

• Scaling

• Rotation

• Shear

• Translation ???
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Translation is not linear

• Translation is not a linear operation.
– Try finding a matrix that takes [x;y] to [x+10;y].

• No matrix in ℝ2x2 corresponds to a translation.
• However, a 3x3 matrix can be used to perform 

2D translation.

• So if we move to a higher dimensional space, 
we can make translations linear.
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Projective Space ℙ2

• Appending 1 as a 3rd coordinate corresponds 
to homogenous coordinates.

• ℝ2→ℙ2 where ℙ2 is the so-called projective 
space.

• Dimensionality of ℙ2 is 3.
• Dimensionality of ℙn is n+1.
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Projective Space ℙ2

• ℙ2 contains homogenised points from ℝ2

• We go from ℝ2 to ℙ2 by appending a 3rd

coordinate 1.
– [x ; y]  [x ; y ; w] where w=1.

• We go back from ℙ2 to ℝ2 by dividing by 3rd

coordinate and removing it.
– [x ; y ; w]  [x/w ; y/w ; w/w]  [x/w ; y/w]



ℙ2 vs. ℝ3

• Both ℙ2 and ℝ3 are 3-dimensional.
• But ℙ2 does not contain [0 ; 0 ; 0]. ℙ2=ℝ3 \[0;0;0].
 Because [0;0;0]  [0/0;0/0;0/0]  [NaN;NaN].
 So [0;0;0] does not correspond to any point in ℝ2.
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2D Transformations
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Inverse Transforms
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Inverse Transforms

What is Inverse of Rotation?
What is inverse of Translation?
What is inverse of Shear in X-direction?
What is inverse of Shear in Y-direciton?
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Recovering Best Affine Transformation

• Given 3 corresponding points x1 ↔ x1’,  x2 ↔ x2’,  
x3 ↔ x3’ where xi’ = Txi

• Find the 6 parameters [a1;a2;a3;a4;a5;a6] of the 
affine transformation T that maps x to x’.

• 1 correspondence yields 2 equations. So 3 
correspondences will yield 6 equations which 
are enough to solve for 6 unknown parameters.
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Recovering Best Affine Transformation

• The 3 correspondences can be written as

• So v* = A-1b.
• But Av=b only for non-noisy measurements x and x’.
• Also, this works only when A is square and non-

singular.
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Recovering Best Affine Transformation

When 
1. measurements are noisy, and/or 
2. A is non-square (more than 3 correspondences)

we want to find v* such that Av* is as close as 
possible to b. That is,

v* = arg minv ||Av-b||2

which is a least-squares problem.



Recovering Best Affine Transformation

At v* 
∇v {||Av-b||2} = 0
⇒∇v {(Av-b)T(Av-b)} = 0
⇒ 2AT(Av*-b) = 0  Prove this. Not as simple as it looks.

⇒ AT(Av*-b) = 0
⇒ ATAv*-ATb = 0
⇒ v* = (ATA)-1ATb = A†b

The matrix A† = (ATA)-1AT is known as the 
pseudo-inverse of A.



Recovering Best Affine Transformation

Concise algorithm
Input: N point correspondences xi ↔ xi’
1. Fill in the 2N x 6 matrix A using the xi

2. Fill in the 2N x 1 vector b using the xi’
3. Compute 6 x 6 pseudo-inverse A† = (ATA)-1AT

4. Compute optimal affine transformation 
parameters as v* = A†b
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Beyond Affine – Projective 
Transformation

• Last row of affine transformation 
matrix is always  [0 0 1].

• If this condition is relaxed we obtain 
the so-called projective 
transformation.

• Also called homography or 
collineation.
– Lines are mapped to lines.

• 8 degrees of freedom. Why?
• Linear in ℙ2.
• Non-linear in ℝ2 because 3rd coordinate 

of x’ is not guaranteed to be 1.
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Projective Transformation

• If a∈ℙ2 and b∈ℙ2 correspond to the same point in 
Cartesian space, then we say that a and b are 
projectively equivalent.
– We write this as a ≡ b.

• In projective space, v ≡ k(v) for all k≠0 because both 
correspond to the same point in Cartesian space.

• So k(Hv) ≡ Hv ⇒ kHv ≡ Hv ⇒ kH ≡ H.
• Let H’=H/H(3,3). Clearly, H’(3,3)=1 and therefore H’ has 

8 free parameters.
• But since H’ ≡ H, H must also have 8 free parameters.



Recovering Best Projective Transform

• Given N corresponding points x1 ↔ x1’,  x2 ↔
x2’, …, xN ↔ xN’ where xi’ ≡ Hxi

• Find the 8 parameters [h1;h2;h3;h4;h5;h6;h7;h8] 
of the projective transformation H that maps x
to x’.

• 8 unknown parameters will require 8 
equations.

Why projectively equivalent?



Recovering Best Projective Transform

• xi’ ≡ Hxi ⇒ both vectors point in the same 
direction.

• So cross-product xi’ × Hxi = 03x1.
• Recall that
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Recovering Best Projective Transform

• Let hi denote the ith row of H. By default it is a 
column vector of size 3 x 1.

• hiT denotes the ith row written as a 1 x 3 row 
vector.

• Let xi’ = [xi’ ; yi’ ; wi’]

• Then                       and
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Recovering Best Projective Transform
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Recovering Best Projective Transform

• Correspondence xi ↔ xi’ yields 3 equations Aih=0.
– However, it can be shown that matrix Ai has 2 linearly 

independent rows
– So one row can be discarded.
– Through an abuse of notation, let us denote the 

resulting 2 x 9 matrix as Ai also.
• So one correspondence yields 2 equations.
• Since 8 unknowns will require 8 equations, we 

will need N≥4 corresponding points.
– The points must be non-collinear.
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Recovering Best Projective Transform

• This will yield the system Ah=0 where size of A is 
2N x 9.
– It can be shown that rank(A)=8 and dim(A)=9.
– So nullity of A is 1 and therefore h can be found as the 

null space of A.
– However, when measurements contain noise or N>4, 

then Ah≠0 and it is better to find h by minimising
||Ah||.

– This can be done via singular value decomposition
• [U,D,V]=svd(A)
• h is the last column of matrix V.



Recovering Best Projective Transform

Concise algorithm
Input: N point correspondences xi ↔ xi’
1. Fill in the 2N x 9 matrix A using the xi and xi’
2. [U,D,V]=svd(A)
3. Optimal projective transformation 

parameters h* lie in last column of matrix V.

This algorithm is known as the Direct Linear Transform (DLT).
For some practical tips, please refer to slides 14—17 from 

http://www.ele.puc-rio.br/~visao/Topicos/Homographies.pdf

http://www.ele.puc-rio.br/~visao/Topicos/Homographies.pdf�


Projective Warping

• Same as affine warping.
• Just remember to move back from ℙ2 to ℝ2.
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