CS 565 Computer Vision

Nazar Khan

Lectures 12, 13 and 14: Spatial
Transformations

Transformations

- We will study 2D spatial transformations

$$
\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

- Affine transformations include
- Scaling
- Rotation
- Shear
- Translation
- Can be carried out via matrix-vector multiplications.

Matrices as linear operators

- Every matrix is a linear operator.
- Every matrix-vector multiplication represents a linear operation.

$$
\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a_{1} x+a_{2} y \\
a_{3} x+a_{4} y
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

- Alternatively, $\mathbf{x}^{\prime}=\mathbf{M x}$.

Transformations

- Scaling

$$
\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

- Rotation

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- Shear

$$
\left[\begin{array}{cc}
1 & s h_{x} \\
s h_{y} & 1
\end{array}\right]
$$

- Translation
???

Translation is not linear

- Translation is not a linear operation.
- Try finding a matrix that takes $[x ; y]$ to $[x+10 ; y]$.
- No matrix in $\mathbb{R}^{2 \times 2}$ corresponds to a translation.
- However, a 3×3 matrix can be used to perform 2D translation. $\left.\left[\begin{array}{lll}1 & 0 & r_{r_{7}} \\ 0 & 1 & r_{r} \\ 0 & 0 & 1\end{array}\right] \begin{array}{l}x \\ y \\ 1\end{array}\right]$
- So if we move to a higher dimensional space, we can make translations linear.

Projective Space \mathbb{P}^{2}

- Appending 1 as a $3^{\text {rd }}$ coordinate corresponds to homogenous coordinates.

$$
\hat{\mathbf{x}}=\left[\begin{array}{c}
\mathbf{x} \\
1
\end{array}\right]
$$

- $\mathbb{R}^{2} \rightarrow \mathbb{P}^{2}$ where \mathbb{P}^{2} is the so-called projective space.
- Dimensionality of \mathbb{P}^{2} is 3 .
- Dimensionality of \mathbb{P}^{n} is $\mathrm{n}+1$.

Projective Space \mathbb{P}^{2}

- \mathbb{P}^{2} contains homogenised points from \mathbb{R}^{2}
- We go from \mathbb{R}^{2} to \mathbb{P}^{2} by appending a $3^{\text {rd }}$ coordinate 1.
$-[\mathrm{x} ; \mathrm{y}] \rightarrow[\mathrm{x} ; \mathrm{y} ; \mathrm{w}]$ where $\mathrm{w}=1$.
- We go back from \mathbb{P}^{2} to \mathbb{R}^{2} by dividing by $3^{\text {rd }}$ coordinate and removing it.
$-[x ; y ; w] \rightarrow[x / w ; y / w ; w / w] \rightarrow[x / w ; y / w]$

\mathbb{P}^{2} vs. \mathbb{R}^{3}

- Both \mathbb{P}^{2} and \mathbb{R}^{3} are 3-dimensional.
- But \mathbb{P}^{2} does not contain $[0 ; 0 ; 0] . \mathbb{P}^{2}=\mathbb{R}^{3} \backslash[0 ; 0 ; 0]$.
- Because $[0 ; 0 ; 0] \rightarrow[0 / 0 ; 0 / 0 ; 0 / 0] \rightarrow[\mathrm{NaN} ; \mathrm{NaN}]$.
- So [0;0;0] does not correspond to any point in \mathbb{R}^{2}.

2D Transformations

2D Transformations

- Basic operation of all 2D transformations is simple

Point to be transformed: $[x, y]$
Point after transformation: [$\left.x^{\prime}, y^{\prime}\right]$

Example

2D Transformations

$$
\left[\begin{array}{cc}
1.5 & 0 \\
0 & 0.5
\end{array}\right]=?
$$

In general, scaling transformation is given by

$$
\left[\begin{array}{cc}
S_{x} & 0 \\
0 & S_{y}
\end{array}\right]
$$

2D Transformations

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=?
$$

Courtesy: Sohaib Khan

Shear in x -direction

$$
\left[\begin{array}{ll}
1 & e \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+e y \\
y
\end{array}\right]
$$

- x-coordinate moves with an amount proportional to the y-coordinate

Shear in y-direction

$$
\left[\begin{array}{ll}
1 & 0 \\
e & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
e x+y
\end{array}\right]
$$

- y-coordinate moves with an amount proportional to the x-coordinate

2D Transformations

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=? \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=?} \\
& {\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=? \quad \text { Reflection is negative scaling }}
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=R \cos (\theta+\varphi) \\
& y_{2}=R \sin (\theta+\varphi)
\end{aligned}
$$

$$
x_{2}=R \cos \theta \cos \varphi-R \sin \theta \sin \varphi
$$

$$
y_{2}=R \sin \theta \cos \varphi+R \cos \theta \sin \varphi
$$

$$
\begin{aligned}
x_{2} & =x_{1} \cos \theta-y_{1} \sin \theta \\
y_{2} & =x_{1} \sin \theta+y_{1} \cos \theta \\
{\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right] } & =\underbrace{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]}_{\mathbf{R}}\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]
\end{aligned}
$$

\mathbf{R} is rotation by θ counterclockwise about origin

Rotation

- Rotation Matrix has some special properties
- Each row/column has norm of I [prove]
- Each row/column is orthogonal to the other [prove]
- So Rotation matrix is an orthonormal matrix

2D Translation

- Point in 2D given by $\left(x_{1} y_{1}\right)$
- Translated by $\left(d_{x} d_{y}\right)$

$$
\begin{aligned}
& x_{2}=x_{1}+d_{x} \\
& y_{2}=y_{1}+d_{y}
\end{aligned}
$$

Translation

- In matrix form

$$
\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{llc}
1 & 0 & d_{x} \\
0 & 1 & d_{y} \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{T}}\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]
$$

- We could not have written T multiplicatively without using homogeneous coordinates

Basic 2D Transformations

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Inverse Transforms

$$
\begin{gathered}
\mathbf{S}=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \quad \mathbf{S}^{-1}=\left[\begin{array}{ccc}
\frac{1}{s_{x}} & 0 & 0 \\
0 & \frac{1}{s_{y}} & 0 \\
0 & 0 & 1
\end{array}\right] \\
\mathbf{S} \mathbf{S}^{-\mathbf{1}}=\boldsymbol{I}
\end{gathered}
$$

Inverse Transforms

$$
\mathbf{S}=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \quad \mathbf{S}^{-1}=\left[\begin{array}{ccc}
\frac{1}{s_{x}} & 0 & 0 \\
0 & \frac{1}{s_{y}} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\mathbf{S} \mathbf{S}^{-1}=\boldsymbol{I}$

What is Inverse of Rotation?
What is inverse of Translation?
What is inverse of Shear in X-direction?
What is inverse of Shear in Y-direciton?

Rotation about an Arbitrary Point

Concatenation or Composition of Transformations

- We can concatenate a large number of transformations into a single transformation
- $\mathbf{P}_{2}=\mathbf{T}_{[d x d y]} \mathbf{S}_{[s]]} \mathbf{R}_{\boldsymbol{\theta}} \mathbf{P}_{1}$
- Rules of matrix multiplication apply
- If we do not use homogeneous coordinates, what might be the problem here?

Order of Transformations

Courtesy: Sohaib Khan

Order of Transformations

- Rotation/Scaling/Shear, followed by Translation

$$
\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
0 & 1 & b_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
a_{1} & a_{2} & 0 \\
a_{3} & a_{4} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
a_{1} & a_{2} & b_{1} \\
a_{3} & a_{4} & b_{2} \\
0 & 0 & 1
\end{array}\right]
$$

Translation, followed by Rotation/Scaling/Shear

$$
\left[\begin{array}{ccc}
a_{1} & a_{2} & 0 \\
a_{3} & a_{4} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
0 & 1 & b_{2} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{1} b_{1}+a_{2} b_{2} \\
a_{3} & a_{4} & a_{3} b_{1}+a_{4} b_{2} \\
0 & 0 & 1
\end{array}\right]
$$

Affine Transformation

- Encodes rotation, scaling, translation and shear

$$
\begin{aligned}
& x_{2}=a_{1} x_{1}+a_{2} y_{1}+b_{1} \\
& y_{2}=a_{3} x_{1}+a_{4} y_{1}+b_{2}
\end{aligned}
$$

- 6 parameters
- Linear transformation
- Parallel lines are preserved [proof ?]

Recovering Best Affine Transformation

- Input: we are given some correspondences
- Output: Compute $a_{1}-a_{6}$ which relate the images

- This is an optimization problem... Find the 'best' set of parameters, given the input data

Recovering Best Affine Transformation

- Given 3 corresponding points $\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{1}{ }^{\prime}, \mathbf{x}_{2} \leftrightarrow \mathbf{x}_{2}{ }^{\prime}$, $\mathbf{x}_{3} \leftrightarrow \mathbf{x}_{3}{ }^{\prime}$ where $\mathbf{x}_{\mathrm{i}}{ }^{\prime}=T \mathbf{x}_{\mathrm{i}}$
- Find the 6 parameters $\left[a_{1} ; a_{2} ; a_{3} ; a_{4} ; a_{5} ; a_{6}\right]$ of the affine transformation T that maps \mathbf{x} to \mathbf{x}^{\prime}.
$x^{\prime}=a_{1} x+a_{2} y+a_{3}$
$y^{\prime}=a_{4} x+a_{5} y+a_{6}$

- 1 correspondence yields 2 equations. So 3 correspondences will yield 6 equations which are enough to solve for 6 unknown parameters.

Recovering Best Affine Transformation

- The 3 correspondences can be written as
- So $\mathbf{v}^{*}=\mathbf{A}^{-1} \mathbf{b}$. $\underbrace{\left[\begin{array}{cccccc}x_{1} & y_{1} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{3} & y_{3} & 1\end{array}\right]}_{\mathrm{A}} \underbrace{\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6}\end{array}\right]}_{\mathrm{v}}=\underbrace{\left[\begin{array}{l}x_{1}^{\prime} \\ y_{1}^{\prime} \\ x_{2}^{\prime} \\ y_{2}^{\prime} \\ x_{3}^{\prime} \\ y_{3}^{\prime}\end{array}\right]}_{\mathrm{b}}$
- But $\mathrm{A} \mathbf{v}=\mathbf{b}$ only for non-noisy measurements \mathbf{x} and \mathbf{x}^{\prime}.
- Also, this works only when A is square and nonsingular.

Recovering Best Affine Transformation

When

1. measurements are noisy, and/or
2. A is non-square (more than 3 correspondences) we want to find \mathbf{v}^{*} such that $A \mathbf{v}^{*}$ is as close as possible to \mathbf{b}. That is,

$$
\mathbf{v}^{*}=\arg \min _{\mathbf{v}}\|A \mathbf{v}-\mathbf{b}\|^{2}
$$

which is a least-squares problem.

Recovering Best Affine Transformation

At \mathbf{v}^{*}

$$
\begin{aligned}
& \nabla_{v}\left\{| | A v-b \mid \|^{2}\right\}=\mathbf{0} \\
& \Rightarrow \nabla_{v}\left\{(A v-b)^{\top}(A v-b)\right\}=\mathbf{0} \\
& \Rightarrow 2 A^{\top}\left(A v^{*}-\mathbf{b}\right)=\mathbf{0} \leftarrow \text { Prove this. Not as simple as it looks. } \\
& \Rightarrow A^{\top}\left(A v^{*}-\mathbf{b}\right)=\mathbf{0} \\
& \Rightarrow A^{\top} A v^{*}-A^{\top} \mathbf{b}=0 \\
& \Rightarrow \mathbf{v}^{*}=\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{b}=A^{+} \mathbf{b}
\end{aligned}
$$

The matrix $A^{+}=\left(A^{\top} A\right)^{-1} A^{\top}$ is known as the pseudo-inverse of A.

Recovering Best Affine Transformation

Concise algorithm
Input: N point correspondences $\mathrm{x}_{\mathrm{i}} \leftrightarrow \mathbf{x}_{\mathrm{i}}{ }^{\prime}$

1. Fill in the $2 N \times 6$ matrix A using the \mathbf{x}_{i}
2. Fill in the $2 N \times 1$ vector b using the x_{i}^{\prime}
3. Compute 6×6 pseudo-inverse $A^{+}=\left(A^{\top} A\right)^{-1} A^{\top}$
4. Compute optimal affine transformation parameters as $\mathbf{v}^{*}=\mathrm{A}^{\dagger} \mathbf{b}$

2D Displacement Models

Translation:

$$
x^{\prime}=x+b_{1}
$$

$$
y^{\prime}=y+b_{2}
$$

- Rigid:

$$
x^{\prime}=x \cos \theta-y \sin \theta+b_{1}
$$

$$
y^{\prime}=x \sin \theta+y \cos \theta+b_{2}
$$

$$
x^{\prime}=a_{1} x+a_{2} y+b_{1}
$$

$$
y^{\prime}=a_{3} x+a_{4} y+b_{2}
$$

Projective: $\quad x^{\prime}=\frac{a_{1} x+a_{2} y+b_{1}}{c_{1} x+c_{2} y+1}$

$$
y^{\prime}=\frac{a_{3} x+a_{4} y+b_{2}}{c_{1} x+c_{2} y+1}
$$

2D Affine Warping

Warping

- Inputs:
- Image X
- Affine Transformation $\mathrm{A}=\left[\begin{array}{lllll}a_{1} & a_{2} & b_{1} & a_{3} & a_{4}\end{array} b_{2}\right]^{T}$
- Output:
- Generate X^{\prime} such that $\mathrm{X}^{\prime}=\mathrm{AX}$
- Obvious Process:
- For each pixel in X
- Apply transformation
- At that location in X^{\prime}, put the same color as at the original location in X
- Problems?

Warping

- This will leave holes...
- Because every pixel does not map to an integer location!
- Reverse Transformation
- For each integer location in X' $^{\prime}$
- Apply inverse mapping
- Problem?
- Will not result in answers at integer locations, in general
- Bilinearly interpolate from 4 neighbors

2D Bilinear Interpolation

- Four nearest points of (x, y)

$$
(\underline{x}, \underline{y}),(\underline{x}, \bar{y}),(\bar{x}, \underline{y}),(\bar{x}, \bar{y})
$$

where $\quad \underline{x}=\operatorname{int}(x)$

$$
\begin{aligned}
& \underline{y}=\operatorname{int}(y) \\
& \bar{x}=\underline{x}+1 \\
& \bar{y}=\underline{y}+1
\end{aligned}
$$

Bilinear Interpolation

$$
\begin{aligned}
& f^{\prime}(x, y)=\overline{\varepsilon_{x}} \overline{\varepsilon_{y}} f(\underline{x}, \underline{y})+\underline{\varepsilon_{x}} \overline{\varepsilon_{y}} f(\bar{x}, \underline{y})+\overline{\varepsilon_{x}} \underline{\varepsilon_{y}} f(\underline{x}, \bar{y})+\underline{\varepsilon_{x}} \underline{\varepsilon_{y}} f(\bar{x}, \bar{y}) \\
& \overline{\varepsilon_{x}}=\bar{x}-x \\
& \overline{\varepsilon_{y}}=\bar{y}-y \\
& \underline{\varepsilon_{x}}=x-\underline{x} \\
& \underline{\varepsilon_{y}}=y-\underline{y}
\end{aligned}
$$

Beyond Affine - Projective Transformation

- Last row of affine transformation matrix is always [lllll 001 .
- If this condition is relaxed we obtain the so-called projective transformation.
- Also called homography or collineation.

$$
H=\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]
$$

- Lines are mapped to lines.
- 8 degrees of freedom. Why?
- Linear in \mathbb{P}^{2}.
- Non-linear in \mathbb{R}^{2} because $3^{\text {rd }}$ coordinate

$$
\begin{aligned}
& x^{\prime}=\frac{h_{1} x+h_{2} y+h_{3}}{h_{7} x+h_{8} y+h_{9}} \\
& y^{\prime}=\frac{h_{4} x+h_{5} y+h_{6}}{h_{7} x+h_{8} y+h_{9}}
\end{aligned}
$$

Projective Transformation

- If $\mathbf{a} \in \mathbb{P}^{2}$ and $\mathbf{b} \in \mathbb{P}^{2}$ correspond to the same point in Cartesian space, then we say that \mathbf{a} and \mathbf{b} are projectively equivalent.
- We write this as $\mathbf{a} \equiv \mathbf{b}$.
- In projective space, $\mathbf{v} \equiv \mathrm{k}(\mathbf{v})$ for all $\mathrm{k} \neq 0$ because both correspond to the same point in Cartesian space.
- $\operatorname{So} \mathrm{k}(\mathrm{Hv}) \equiv \mathrm{Hv} \Rightarrow \mathrm{kHv} \equiv \mathrm{Hv} \Rightarrow \mathrm{kH} \equiv \mathrm{H}$.
- Let $\mathrm{H}^{\prime}=\mathrm{H} / \mathrm{H}(3,3)$. Clearly, $\mathrm{H}^{\prime}(3,3)=1$ and therefore H^{\prime} has 8 free parameters.
- But since $H^{\prime} \equiv H, \underline{H \text { must also have } 8 \text { free parameters. }}$

Recovering Best Projective Transform

- Given N corresponding points $\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{1}{ }^{\prime}, \mathbf{x}_{2} \leftrightarrow$ $\mathbf{x}_{2}{ }^{\prime}, \ldots, \mathbf{x}_{N} \leftrightarrow \mathbf{x}_{N}{ }^{\prime}$ where $\mathbf{x}_{\mathrm{i}}{ }^{\prime} \equiv H \mathbf{x}_{i} \stackrel{\text { why projectively equivalent? }}{ }$
- Find the 8 parameters $\left[h_{1} ; \mathrm{h}_{2} ; \mathrm{h}_{3} ; \mathrm{h}_{4} ; \mathrm{h}_{5} ; \mathrm{h}_{6} ; \mathrm{h}_{7} ; \mathrm{h}_{8}\right]$ of the projective transformation H that maps \mathbf{x} to x^{\prime}.
- 8 unknown parameters will require 8 equations.

Recovering Best Projective Transform

- $\mathbf{x}_{\mathrm{i}}{ }^{\prime} \equiv \mathrm{Hx}_{\mathrm{i}} \Rightarrow$ both vectors point in the same direction.
- So cross-product $\mathbf{x}_{\mathrm{i}}{ }^{\prime} \times \mathrm{Hx}_{\mathrm{i}}=\mathbf{0}_{3 \times 1}$.
- Recall that

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]}_{[\mathbf{a}]_{\times}}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=[\mathbf{a}]_{\times} \mathbf{b}
$$

Recovering Best Projective Transform

- Let \mathbf{h}^{i} denote the $\mathrm{i}^{\text {th }}$ row of H . By default it is a column vector of size 3×1.
- $\mathbf{h}^{i T}$ denotes the $\mathrm{i}^{\text {th }}$ row written as a 1×3 row vector.
- Let $\mathbf{x}_{\mathrm{i}}{ }^{\prime}=\left[x_{i}{ }^{\prime} ; y_{i}{ }^{\prime} ; w_{i}{ }^{\prime}\right]$
- Then $\mathbf{H x} x_{i}=\left[\begin{array}{l}\mathbf{h}^{1 T} \mathbf{x}_{i} \\ \mathbf{h}^{2 T} \mathbf{x}_{i} \\ \mathbf{h}^{3 T} \mathbf{x}_{i}\end{array}\right]$ and $\mathbf{x}_{i}^{\prime} \times \mathbf{H x}_{i}=\left[\begin{array}{l}y_{i}^{\prime} \mathbf{h}^{3 T} \mathbf{h}_{i}-w_{i}^{\prime} \mathbf{h}^{2 T} \mathbf{x}_{i} \\ w_{1} \mathbf{h}^{T T} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 T} \mathbf{x}_{i} \\ x_{i}^{\prime} \mathbf{h}^{2 T} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 T} \mathbf{x}_{i}\end{array}\right]$.

Recovering Best Projective Transform

$$
\begin{aligned}
\mathbf{x}_{i}^{\prime} \times \mathbf{H x}_{i} & =\left[\begin{array}{c}
y_{i}^{\prime} \mathbf{h}^{3 T} \mathbf{x}_{i}-w_{i}^{\prime} \mathbf{h}^{2 T} \mathbf{x}_{i} \\
w_{i}^{\prime} \mathbf{h}^{1 T} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 T} \mathbf{x}_{i} \\
x_{i} \mathbf{h}^{2 T} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 T} \mathbf{x}_{i}
\end{array}\right]_{3 \times 1}=\mathbf{0} \\
& \Rightarrow\left[\begin{array}{c}
y_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{3}-w_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{2} \\
w_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{1}-x_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{3} \\
x_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{2}-y_{i}^{\prime} \mathbf{x}_{i}^{T} \mathbf{h}^{1}
\end{array}\right]_{3 \times 1}=\mathbf{0} \quad \text { since } \mathbf{a}^{T} \mathbf{b}=\mathbf{b}^{T} \mathbf{a} \\
& \Rightarrow\left[\begin{array}{ccc}
\mathbf{0}^{T} & -w_{i}^{\prime} \mathbf{x}_{i}^{T} & y_{i}^{\prime} \mathbf{x}_{i}^{T} \\
w_{i}^{\prime} \mathbf{x}_{i}^{T} & \mathbf{0}^{T} & -x_{i}^{\prime} \mathbf{x}_{i}^{T} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{T} & x_{i}^{\prime} \mathbf{x}_{i}^{T} & \mathbf{0}^{T}
\end{array}\right]_{3 \times 9}\left[\begin{array}{l}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right]_{9 \times 1}=\mathbf{0} \\
& \Rightarrow A_{i} \mathbf{h}=\mathbf{0}
\end{aligned}
$$

Recovering Best Projective Transform

- Correspondence $\mathbf{x}_{i} \leftrightarrow \mathbf{x}_{i}^{\prime}$ yields 3 equations $A_{i} \mathbf{h}=\mathbf{0}$.
- However, it can be shown that matrix A_{i} has 2 linearly independent rows (since $x_{i}^{\prime} \mathrm{A}_{i}^{1}+y_{i}^{\prime} \mathrm{A}_{i}^{2}+w_{i}^{\prime} \mathrm{A}_{i}^{3}=0$)
- So one row can be discarded.
- Through an abuse of notation, let us denote the resulting 2×9 matrix as A_{i} also.
- So one correspondence yields 2 equations.
- Since 8 unknowns will require 8 equations, we will need $\mathrm{N} \geq 4$ corresponding points.
- The points must be non-collinear.

Recovering Best Projective Transform

- This will yield the system $\mathbf{A h}=\mathbf{0}$ where size of A is $2 \mathrm{~N} \times 9$.
- It can be shown that $\operatorname{rank}(A)=8$ and $\operatorname{dim}(A)=9$.
- So nullity of A is 1 and therefore h can be found as the null space of A.
- However, when measurements contain noise or $N>4$, then $\mathbf{A} \mathbf{h} \neq \mathbf{0}$ and it is better to find \mathbf{h} by minimising ||Ah||.
- This can be done via singular value decomposition
- $[\mathrm{U}, \mathrm{D}, \mathrm{V}]=\mathrm{svd}(\mathrm{A})$
- \mathbf{h} is the last column of matrix V .

Recovering Best Projective Transform

Concise algorithm
Input: N point correspondences $\mathbf{x}_{\mathrm{i}} \leftrightarrow \mathbf{x}_{\mathbf{i}}{ }^{\prime}$

1. Fill in the $2 N \times 9$ matrix A using the \mathbf{x}_{i} and $\mathbf{x}_{i}{ }^{\prime}$
2. $[U, D, V]=\operatorname{svd}(A)$
3. Optimal projective transformation parameters \mathbf{h}^{*} lie in last column of matrix V .

This algorithm is known as the Direct Linear Transform (DLT).
For some practical tips, please refer to slides 14-17 from http://www.ele.puc-rio.br/~visao/Topicos/Homographies.pdf

Projective Warping

- Same as affine warping.
- Just remember to move back from \mathbb{P}^{2} to \mathbb{R}^{2}.

