CS 565 Computer Vision

Nazar Khan
PUCIT
Lecture 21: Principal Component
Analysis

Principal Component Analysis

- Widely used technique for dimensionality reduction and object recognition.
- Projects a set of signals onto a lower dimensional orthogonal space.
- Abbreviated as PCA.
- Also known as the Karhunen-Loeve transform.

PCA

- Consider a set of signals $X=\left[x_{1}, \ldots, x_{N}\right]$ where each $\mathrm{x}_{\mathrm{i}}=\in \mathbb{R}^{\mathrm{D}}$.
- Goal: Project each x_{i} onto a space with dimensionality $\mathrm{M}<\mathrm{D}$ while maximising the variance of the projected data.

PCA

- To begin, let us set $M=1$, i.e, projection onto a 1-dimensional space.
- We can define the direction of this space by a vector $u_{1} \in \mathbb{R}^{D}$.
- For convenience, let $\mathrm{u}_{1}^{\top} \mathrm{u}_{1}=1$
- We are only interested in the direction defined by u_{1} and not the magnitude of u_{1}.

PCA

- Each data point x_{i} is projected onto a scalar value $u_{1}{ }^{\top} x_{i}$.

Mean of the projected data is given by $u_{1}^{T} \bar{x}$ where $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$
is the mean of the data points.
Variance of the projected data is given by $\frac{1}{N} \sum_{i=1}^{N}\left(u_{1}^{T} x_{i}-u_{1}^{T} \bar{x}\right)^{2}=u_{1}^{T} S u_{1}$
where $S=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}$ is the data covariance matrix.

PCA

- Our goal was to maximise the variance of the projected points.
- That is, we want to maximise $\mathrm{u}_{1}{ }^{\top} \mathrm{Su}_{1}$ with respect to u_{1}.
- To prevent $\left|\left|u_{1}\right|\right| \rightarrow \infty$, we must constrain the norm of u_{1}.
- This constraint comes from the normalization condition $u_{1}{ }^{\top} u_{1}=1$.

PCA

- To maximise $f\left(\mathrm{u}_{1}\right)=\mathrm{u}_{1}{ }^{\top} \mathrm{Su}_{1}$ with the contstraint $u_{1}{ }^{\top} u_{1}=1$, we use the method of Lagrange multipliers.
- Let $g\left(u_{1}\right)=1-u_{1}{ }^{\top} u_{1}$ denote the constraint function.
- Our constrained maximisation $f\left(u_{1}\right)$ is equivalent to the unconstrained maximisation of $f\left(u_{1}\right)+\lambda_{1} g\left(u_{1}\right)$.

PCA

- Set $d / d u_{1} f\left(u_{1}\right)+\lambda_{1} g\left(u_{1}\right)$ equal to zero to find optimal u_{1}.

$$
\begin{gathered}
d / d u_{1}\left(u_{1}^{\top} S u_{1}\right)+\lambda_{1}\left(1-u_{1}^{\top} u_{1}\right)=0 \\
S u_{1}=\lambda_{1} u_{1}
\end{gathered}
$$

which says that the optimal u1 must be an eigenvector of S.

- By left-multiplying by $u_{1}{ }^{\top}$ we see that $u_{1}{ }^{\top} S u_{1}=\lambda_{1}$. That is $f\left(u_{1}\right)=\lambda_{1}$.
- So, u_{1} must be the eigenvector corresponding to the largest eigenvalue of S.
- This eigenvector is also known as the first principal component.

PCA

- For $M>1$, note that eigenvectors of S are orthogonal to each other.
- So the eigenvector u_{2} corresponding to the second largest eigenvalue λ_{2} of S gives the direction of maximum variance orthogonal to u_{1}.
- Similarly, the eigenvector u_{i} corresponding to the $i^{\text {th }}$ largest eigenvalue λ_{i} of S gives the direction of maximum variance orthogonal to the subspace $\left[u_{1}, u_{2}, \ldots, u_{i-1}\right]$.

PCA

Summary

- Compute data covariance matrix

$$
S=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

- Pick the M eigenvectors of S corresponding to the M largest eigenvalues.

Principal Theorem of Eigenspace Representations

- Consider N images that are represented as vectors $f_{1}, \ldots, f_{N} \in \mathbb{R}^{D}$.
- Usually one has less images than pixels, i.e. $\mathrm{N} \ll \mathrm{D}$ (e.g. $\mathrm{D}=$ 65536, N = 1000).
- Then the $\mathrm{D} \times \mathrm{D}$ covariance matrix S is symmetric, and
- has at most N nonvanishing eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{N}>0$.
- with corresponding orthonormal eigenvectors $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{N}}$.
- Every image f_{i} can be represented using these m eigenvectors of S :

$$
\begin{array}{|l|}
\hline f_{i}=\bar{f}+\sum_{j=1}^{N} a_{i j} u_{j} \quad(i=1, \ldots, N) \\
\text { where } a_{i j}=\left(f_{i}-\bar{f}\right)^{T} u_{j} \longleftarrow
\end{array} \quad \begin{aligned}
& \text { Projection of } \\
& \text { difference from } \\
& \text { mean onto } \\
& \text { eigenvector } \mathrm{u}_{\mathrm{j}}
\end{aligned}
$$

Dimensionality Reduction using PCA

- Since eigenvalues represent the variance along the direction of the corresponding eigenvector, eigenvalues close to 0 and their eigenvectors can be ignored.
- They do not represent directions of significant variation.
- Usually, only $\mathrm{k} \ll \mathrm{N}$ significant eigenvalues exist where $N=n u m b e r$ of non-zero eigen-values.
- For example $\mathrm{k}=5$ and $\mathrm{N}=1000$.
- So, each data point f_{i} can be represented even more compactly

$$
\begin{aligned}
& f_{i}=\bar{f}+\sum_{j=1}^{k} a_{i j} u_{j} \quad(i=1, \ldots, N) \\
& \text { where } a_{i j}=\left(f_{i}-\bar{f}\right)^{T} u_{j}
\end{aligned}
$$

Computational Aspects

- Usually, covariance matrix $S \in R^{D \times D}$ is very large.
- Images of size 256×256 pixels yield $D=65536$.
- Thus, S has size 65536×65536.
- Since the matrix S is not sparse, one would not even want to store it, let alone compute its eigen decomposition.
- A direct computation of all eigenvalues and eigenvectors of S would be far too time consuming.
- However, there is a trick.

Computational Aspects

- Define $\mathrm{D}=\left[\mathrm{x}_{1}-\bar{x}, \ldots, \mathrm{x}_{\mathrm{N}}-\bar{x}\right]$.
- Then $\mathrm{S}=\mathrm{DD}^{\top} / \mathrm{N}$ is the DxD covariance matrix. (Verify)
- Since $N \ll D$, let us consider the much smaller matrix $T=D^{\top} D / N$.
- The m eigenvalues of T are also eigenvalues of S.
- Moreover, T contains all nonvanishing eigenvalues of S :
- The remaining $D-N$ eigenvalues of S are zero.
- If w_{i} is an eigenvector of T, then $v_{i}:=D w_{i}$ is an eigenvector of S.
- norm $\left(v_{i}\right)$ might not be 1 , so it must be renormalised.
- Advantage: instead of working with a 65536×65536 matrix, work with a 1000×1000 matrix.

Computational Aspects

- One can also ignore the eigen-decomposition completely and compute the M largest eigenvalues and their corresponding eigenvectors via the iterative Power Method.

Training and Recognition via PCA

- Image sets of different objects can yield their corresponding subspaces.
$-\mathrm{X}_{\text {planes }} \rightarrow \mathrm{U}_{\text {planes }}$ via PCA
$-X_{\text {bikes }} \rightarrow U_{\text {bikes }}$ via PCA
- A new object can be projected onto both subspaces and then reconstructed.
- The subspace with the smallest reconstruction error gives the most similar object in the data base.

