CS 565 Computer Vision

Nazar Khan PUCIT

Lecture 21: Principal Component Analysis

Principal Component Analysis

- Widely used technique for dimensionality reduction and object recognition.
- Projects a set of signals onto a lower dimensional orthogonal space.
- Abbreviated as PCA.
- Also known as the Karhunen-Loeve transform.

- Consider a set of signals $X=[x_1,...,x_N]$ where each $x_i=\in\mathbb{R}^D$.
- Goal: Project each x_i onto a space with dimensionality M<D while maximising the variance of the projected data.

- To begin, let us set M=1, i.e, projection onto a 1-dimensional space.
- We can define the direction of this space by a vector $u_1 \in \mathbb{R}^D$.
- For convenience, let $u_1^Tu_1=1$
 - We are only interested in the direction defined by u_1 and not the magnitude of u_1 .

• Each data point x_i is projected onto a scalar value $u_1^Tx_i$.

Mean of the projected data is given by $u_1^T \overline{x}$ where $\overline{x} = \frac{1}{N} \sum_{i=1}^N x_i$ is the mean of the data points.

Variance of the projected data is given by $\frac{1}{N} \sum_{i=1}^{N} \left(u_1^T x_i - u_1^T \overline{x} \right)^2 = u_1^T S u_1$

where $S = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})(x_i - \overline{x})^T$ is the data covariance matrix.

- Our goal was to maximise the variance of the projected points.
- That is, we want to maximise $u_1^TSu_1$ with respect to u_1 .
- To prevent $||u_1|| \to \infty$, we must constrain the norm of u_1 .
 - This constraint comes from the normalization condition $u_1^Tu_1=1$.

- To maximise $f(u_1)=u_1^TSu_1$ with the contstraint $u_1^Tu_1=1$, we use the **method of Lagrange multipliers**.
- Let $g(u_1)=1-u_1^Tu_1$ denote the **constraint** function.
- Our constrained maximisation $f(u_1)$ is equivalent to the unconstrained maximisation of $f(u_1)+\lambda_1 g(u_1)$.

• Set $d/du_1 f(u_1) + \lambda_1 g(u_1)$ equal to zero to find optimal u_1 . $d/du_1 (u_1^T S u_1) + \lambda_1 (1 - u_1^T u_1) = 0$ $Su_1 = \lambda_1 u_1$

which says that the optimal u1 must be an eigenvector of S.

- By left-multiplying by u_1^T we see that $u_1^T S u_1 = \lambda_1$. That is $f(u_1) = \lambda_1$.
- So, u₁ must be the eigenvector corresponding to the largest eigenvalue of S.
 - This eigenvector is also known as the first principal component.

- For M>1, note that eigenvectors of S are orthogonal to each other.
- So the eigenvector u_2 corresponding to the second largest eigenvalue λ_2 of S gives the direction of maximum variance orthogonal to u_1 .
- Similarly, the eigenvector u_i corresponding to the i^{th} largest eigenvalue λ_i of S gives the direction of maximum variance orthogonal to the subspace $[u_1, u_2, ..., u_{i-1}]$.

Summary

Compute data covariance matrix

$$S = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})(x_i - \overline{x})^T$$

 Pick the M eigenvectors of S corresponding to the M largest eigenvalues.

Principal Theorem of Eigenspace Representations

- Consider N images that are represented as vectors $f_1,...,f_N \in \mathbb{R}^D$.
 - Usually one has less images than pixels, i.e. N<<D (e.g. D = 65536, N = 1000).
- Then the D×D covariance matrix S is symmetric, and
 - − has at most N nonvanishing eigenvalues $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_N > 0$.
 - with corresponding orthonormal eigenvectors $u_1,...,u_N$.
- Every image f_i can be represented using these m eigenvectors of S: $\begin{bmatrix} c & \bar{c} & N \end{bmatrix}$

$$f_i = \bar{f} + \sum_{j=1}^{N} a_{ij} u_j \quad (i = 1, ..., N)$$
where $a_{ij} = (f_i - \bar{f})^T u_j$

Projection of difference from mean onto eigenvector u_i.

Dimensionality Reduction using PCA

- Since eigenvalues represent the variance along the direction of the corresponding eigenvector, eigenvalues close to 0 and their eigenvectors can be ignored.
 - They do not represent directions of significant variation.
- Usually, only k<<N significant eigenvalues exist where N=number of non-zero eigen-values.
 - For example k=5 and N=1000.
- So, each data point f_i can be represented even more compactly

$$f_i = \bar{f} + \sum_{j=1}^k a_{ij} u_j \quad (i = 1, ..., N)$$
where $a_{ij} = (f_i - \bar{f})^T u_j$

Computational Aspects

- Usually, covariance matrix $S \in \mathbb{R}^{D \times D}$ is very large.
 - Images of size 256×256 pixels yield D = 65536.
 - Thus, S has size 65536 × 65536.
 - Since the matrix S is not sparse, one would not even want to store it, let alone compute its eigen decomposition.
 - A direct computation of all eigenvalues and eigenvectors of S would be far too time consuming.
- However, there is a trick.

Computational Aspects

- Define D=[x_1 - \bar{x} ,..., x_N - \bar{x}].
- Then S=DD^T/N is the DxD covariance matrix. (Verify)
- Since N<<D, let us consider the much smaller matrix $T=D^TD/N$.
 - The m eigenvalues of T are also eigenvalues of S.
 - Moreover, T contains all nonvanishing eigenvalues of S:
 - The remaining D–N eigenvalues of S are zero.
 - If w_i is an eigenvector of T, then $v_i := Dw_i$ is an eigenvector of S.
 - norm(v_i) might not be 1, so it must be renormalised.
- Advantage: instead of working with a 65536 × 65536 matrix, work with a 1000 x 1000 matrix.

Computational Aspects

 One can also ignore the eigen-decomposition completely and compute the M largest eigenvalues and their corresponding eigenvectors via the iterative Power Method.

Training and Recognition via PCA

- Image sets of different objects can yield their corresponding subspaces.
 - $-X_{planes} \rightarrow U_{planes}$ via PCA
 - $-X_{\text{bikes}} \rightarrow U_{\text{bikes}}$ via PCA
- A new object can be projected onto both subspaces and then reconstructed.
- The subspace with the smallest reconstruction error gives the most similar object in the data base.