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Analysis



Principal Component Analysis

• Widely used technique for dimensionality 
reduction and object recognition.

• Projects a set of signals onto a lower 
dimensional orthogonal space.

• Abbreviated as PCA.
• Also known as the Karhunen-Loeve transform.



PCA

• Consider a set of signals X=[x1,…, xN] where 
each xi=∈ℝD.

• Goal: Project each xi onto a space with 
dimensionality M<D while maximising the 
variance of the projected data.



PCA

• To begin, let us set M=1, i.e, projection onto a 
1-dimensional space.

• We can define the direction of this space by a 
vector u1∈ℝD.

• For convenience, let u1
Tu1=1

– We are only interested in the direction defined by 
u1 and not the magnitude of u1.



PCA

• Each data point xi is projected onto a scalar 
value u1

Txi.
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PCA

• Our goal was to maximise the variance of the 
projected points.

• That is, we want to maximise u1
TSu1 with 

respect to u1.
• To prevent ||u1||→∞, we must constrain the 

norm of u1.
– This constraint comes from the normalization 

condition u1
Tu1=1.



PCA

• To maximise f(u1)=u1
TSu1 with the contstraint

u1
Tu1=1, we use the method of Lagrange 

multipliers.
• Let g(u1)=1-u1

Tu1 denote the constraint 
function.

• Our constrained maximisation f(u1) is 
equivalent to the unconstrained maximisation
of f(u1)+λ1g(u1).



PCA
• Set d/du1 f(u1)+λ1g(u1) equal to zero to find optimal u1.

d/du1 (u1
TSu1)+λ1(1- u1

Tu1)=0
Su1=λ1u1

which says that the optimal u1 must be an eigenvector 
of S.

• By left-multiplying by u1
T we see that u1

TSu1=λ1. That is 
f(u1)=λ1.

• So, u1 must be the eigenvector corresponding to the 
largest eigenvalue of S.
– This eigenvector is also known as the first principal 

component.



PCA

• For M>1, note that eigenvectors of S are 
orthogonal to each other.

• So the eigenvector u2 corresponding to the 
second largest eigenvalue λ2 of S gives the 
direction of maximum variance orthogonal to u1.

• Similarly, the eigenvector ui corresponding to the 
ith largest eigenvalue λi of S gives the direction of 
maximum variance orthogonal to the subspace 
[u1, u2, … , ui-1].



PCA

Summary
• Compute data covariance matrix 

• Pick the M eigenvectors of S corresponding to 
the M largest eigenvalues.
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Principal Theorem of Eigenspace
Representations

• Consider N images that are represented as vectors 
f1,...,fN∈ℝD.
– Usually one has less images than pixels, i.e. N<<D (e.g. D = 

65536, N = 1000).

• Then the D×D covariance matrix S is symmetric, and
– has at most N nonvanishing eigenvalues λ1≥λ2≥…≥λN>0.
– with corresponding orthonormal eigenvectors u1,...,uN.

• Every image fi can be represented using these m 
eigenvectors of S:
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Dimensionality Reduction using PCA

• Since eigenvalues represent the variance along the direction 
of the corresponding eigenvector, eigenvalues close to 0 and 
their eigenvectors can be ignored.
– They do not represent directions of significant variation.

• Usually, only k<<N significant eigenvalues exist where 
N=number of non-zero eigen-values.
– For example k=5 and N=1000.

• So, each data point fi can be represented even more 
compactly
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Computational Aspects

• Usually, covariance matrix S∈RD×D is very large.
– Images of size 256 × 256 pixels yield D = 65536.
– Thus, S has size 65536 × 65536.
– Since the matrix S is not sparse, one would not even 

want to store it, let alone compute its eigen
decomposition.

– A direct computation of all eigenvalues and 
eigenvectors of S would be far too time consuming.

• However, there is a trick.



Computational Aspects
• Define D=[x1-,…,xN-].
• Then S=DDT/N is the DxD covariance matrix. (Verify)
• Since N<<D, let us consider the much smaller matrix 

T=DTD/N.
– The m eigenvalues of T are also eigenvalues of S.
– Moreover, T contains all nonvanishing eigenvalues of S:

• The remaining D−N eigenvalues of S are zero.
– If wi is an eigenvector of T, then vi := Dwi is an eigenvector 

of S. 
• norm(vi) might not be 1, so it must be renormalised.

• Advantage: instead of working with a 65536 × 65536 
matrix, work with a 1000 x 1000 matrix.



Computational Aspects

• One can also ignore the eigen-decomposition 
completely and compute the M largest 
eigenvalues and their corresponding 
eigenvectors via the iterative Power Method.



Training and Recognition via PCA

• Image sets of different objects can yield their 
corresponding subspaces.
– XplanesUplanes via PCA
– Xbikes Ubikes via PCA

• A new object can be projected onto both 
subspaces and then reconstructed.

• The subspace with the smallest reconstruction 
error gives the most similar object in the data 
base.
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