## **CS-565** Computer Vision

Nazar Khan Lecture 3

## A Note on Pre-Requisites

- Pre-requisites
  - Linear Algebra
  - Probability
  - Calculus
- We will cover some basics as they come along.
- So don't worry too much.
- However, it will serve you well to read the Appendices of standard Computer Vision, Image Processing or Computer Graphics books. They are usually very helpful
  - Appendix from Rich Szeliski's book
  - Appendix from Gonzalez & Woods' book

# Study Tip

- These slides are available before class in the course folder.
- Before class:
  - Print them
  - Read them
- During class:
  - Take notes on them
- This will save you LOTS OF effort after class.

## Topics to be covered

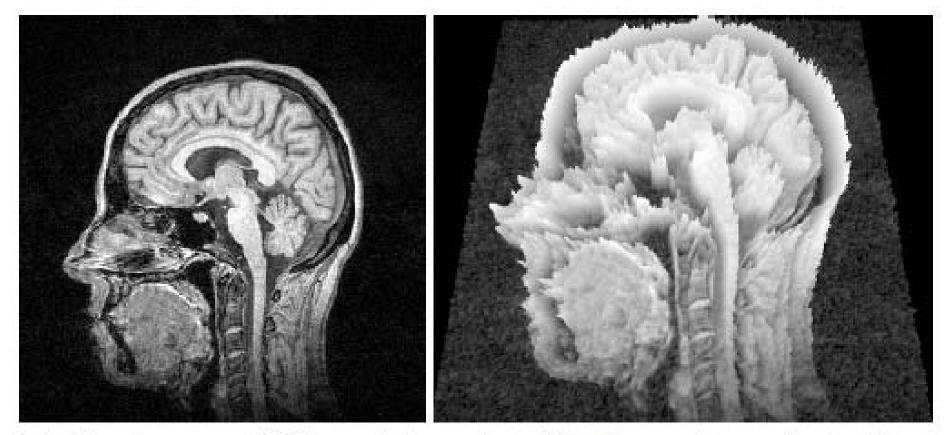
- Image types
- Sampling and Quantization
- Noise models

# Image Concepts

- What is a grayscale image?
  - A mapping from a rectangular domain  $\Omega = (0,r) \times (0,c)$  to the range  $\mathbb{R}$

 $f:\mathbb{R}^2\supset\Omega\to\mathbb{R}$ 

- The domain is called image domain or image plane
- The range specifies grey value
- Usually low grey values are dark and high grey values bright.



Left: Magnetic resonance (MR) image of a human head. Right: Representation as a function f(x, y) over a rectangular image domain  $\Omega$ . Authors: J. Weickert, C. Schnörr (2000).

# Sampling

- Discretization of the domain  $\boldsymbol{\Omega}$
- Image data lie on a rectangular grid of points
- This creates a digital image

$$\{f_{i,j} \mid i=1,...,m; j=1,...,n\}$$

- Grid point is called a pixel (picture element)
  - Pixel dimensions are usually the same in both directions.
- Sampling determines image quality

## Sampling



Digital test image with different sampling rates. Top left: Sampled with  $256 \times 256$  pixels. Top right:  $128 \times 128$  pixels. Bottom left:  $64 \times 64$  pixels. Bottom right:  $32 \times 32$  pixels. Author: J. Weickert (2000).

# Quantization

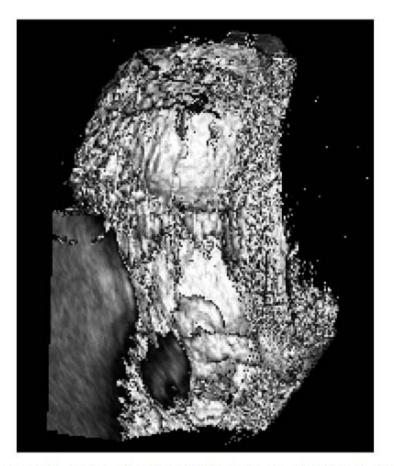
- Discretization of the range  ${\mathbb R}$
- Saves disk space
- If gray value is coded by a single byte, then the discrete range is given by?
  - {0,1,...,255}
- Range of binary images?
  {0,1}
- Humans can distinguish only 40 grayscales
- But we are also very good at analyzing binary images.

#### Quantization



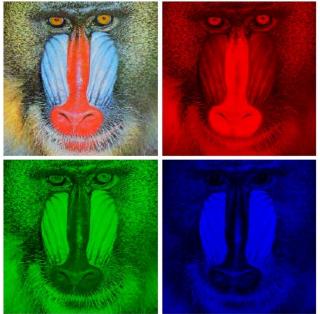
Digital test image ( $256 \times 256$  pixels) with different quantisation rates. Top left: 256 greyscales. Top right: 32 greyscales. Bottom left: 8 greyscales. Bottom right: 2 greyscales. Author: J. Weickert (2000).

- m-dimensional images
- Domain in  $\mathbb{R}^m$
- m=1: 1D signals (audio)
- m=2: 2D images
- m=3: 3D images (CT Scan, MRI, Kinect)
  - Image points in 3D are called voxels (volume elements)
  - Voxel dimensions usually differ in different directions.



Rendering of a 3-D ultrasound image of a human fetus in its 10th week. Authors: J. Weickert, K. Zuiderveld, B.M. ter Haar Romeny, W. Niessen (1997).

- Vector Valued Images
- Range in  $\mathbb{R}^n$
- Equivalent to having n channels
- Examples:
  - Color Images
    - 3 channels Red, Green Blue
    - Humans can distinguish 2,000,000 colours!
  - Multispectral images
    - Satellite images
    - Many channels (4-30) that represent different frequency bands.



- Matrix valued images
- Range in  $\mathbb{R}^{n \times n}$
- Every pixel location stores an n-by-n matrix

– Useful in medical imaging

- Image Sequences
- Any of the above types of images can be considered in sequence
- Domain will change from  $\mathbb{R}^m$  to  $\mathbb{R}^{m+1}$ .
- For this class, we will mainly be concerned with 2D grayscale images and/or their sequences (videos).

#### **NOISE MODELS**

# Noise Models

- Noise
  - Additive Noise
  - Multiplicative Noise
  - Impulse Noise
  - Measuring Noise
- Blur
  - Convolutions
  - Modeling Blur by Convolutions
- Combined Blur and Noise

# Noise

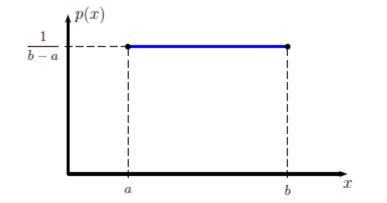
- Very common in digital images (or any realworld data)
- Can have many reasons, e.g.
  - image sensor of a digital camera
  - grainy photographic films that are digitised
  - specific acquisition methods:
    - e.g. ultrasound imaging always creates ellipse-shaped speckle noise
  - atmospheric disturbance during wireless transmission

## Additive Noise

- Most important type of noise
  - F=G+N where G is the original image and N is the noise.
- Distribution of N
  - Uniform (pretty easy)
  - Gaussian (pretty common)

# **Uniform Additive Noise**

- Not a very realistic model of noise
- But easy to simulate
- Constant density function between a and b
- F=G+U where every pixel in U is uniformly distributed between a and b



Density function for uniform noise. Author: M. Mainberger (2008).

## **Uniform Additive Noise**

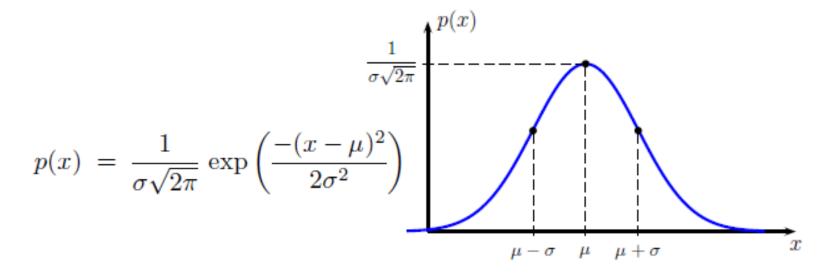


Left: Original image,  $256 \times 256$  pixels, grey value range: [0, 255]. Right: After adding noise with uniform distribution in [-70, 70]. Resulting grey values outside [0, 255] have been cropped. Author: J. Weickert (2007).

## **Gaussian Additive Noise**

- Most important noise model
  - thermal noise from the image sensor
  - circuit noise from signal amplifications
- When many sources of noise are combined, the cumulative noise can be modeled using a Gaussian density
- F=G+  $\aleph(\mu, \sigma)$

#### **Gaussian Additive Noise**



Density function for Gaussian noise. Author: M. Mainberger (2008).

• Gaussian noise lies almost completely within the interval  $\mu \pm 3\sigma$ 

#### **Gaussian Additive Noise**



Left: Original image,  $256 \times 256$  pixels, grey value range: [0, 255]. Right: After adding Gaussian noise with  $\sigma = 64.48$ . Grey values outside [0, 255] have been cropped. Author: J. Weickert (2002).

# **Multiplicative Noise**

• Signal dependent

noise caused by grains of a photographic emulsion

• F=G+N.\*G

## **Multiplicative Noise**



Left: Original image,  $256 \times 256$  pixels, grey value range: [0, 255]. Right: After applying multiplicative noise where n has uniform distribution in [-0.5, 0.5]. Resulting grey values outside [0, 255] have been cropped. Note that darker grey values are less affected by noise than brighter ones. Author: J. Weickert (2007).

## Impulse Noise

- Degrades only <u>some</u> pixels.
  - Additive and multiplicative noise affects <u>all</u> pixels
  - Defect in the imaging sensor
- Unipolar defective pixels have the same wrong gray value
- Bipolar defective pixels can have either of 2 wrong gray values

– salt-and-pepper noise – max and min gray value

#### **Impulse Noise**



Left: Original image,  $256 \times 256$  pixels. Right: 20 % of all pixels have been degraded by salt-and-pepper noise, where bright and dark values have the same probability. Author: J. Weickert (2002).

## **Measuring Noise**

• Mean Squared Error:  $||F - G||^2$ 

MSE
$$(f,g) := \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (f_{i,j} - g_{i,j})^2.$$

- The smaller the better

• Peak-Signal-to-Noise Ratio:

$$\operatorname{PSNR}(f,g) := 10 \, \log_{10} \left( \frac{255^2}{\operatorname{MSE}(f,g)} \right)$$

- The higher the better
- Unit is decibel (dB)
- PSNR <30 dB starts to become noticeable</li>

## **Measuring Noise**



Top left: Original image,  $256 \times 256$  pixels. Top right: Adding Gaussian noise with  $\sigma = 15$  gives MSE = 226.06 and PSNR = 24.59 dB. Bottom left:  $\sigma = 30$  yields MSE = 904.24 and PSNR = 18.57 dB. Bottom right:  $\sigma = 60$  yields MSE = 3616.95 and PSNR = 12.55 dB. Grey values outside [0, 255] are cropped. Author: J. Weickert (2009).

- Second source of image degradation besides noise
  - Defocusing,
  - Imperfections of the optical system,
  - Motion blur







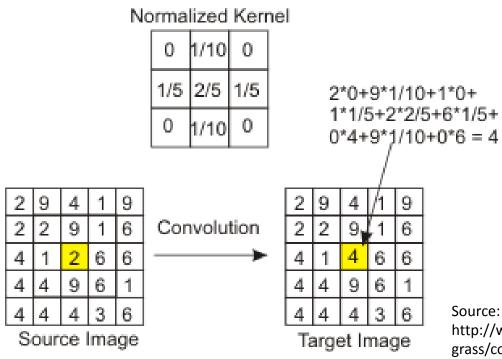


- Simplest blur shift invariant (same amount of blurring at all image locations)
- Can be thought of as a <u>weighted averaging</u> within a certain neighbourhood

- Averaging: 
$$\frac{1}{n}\sum_{i=1}^{n}g_{i}$$

- Weighted averaging:  $\sum_{i=1}^{n} w_i g_i$ 

- Moving weighted averaging can be achieved via **convolution**
- For every image pixel
  - Place mask on the image pixel
  - Take dot product of mask and image region under mask
  - Store result on that pixel's location in new image



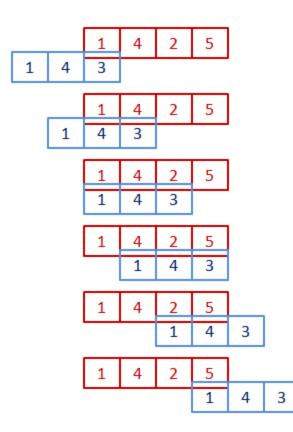
http://www.ahristov.com/taller/procgraph/grass/convolution.gif



Source: http://cg2010studio.files.wordpress.com/2012/05/gaussian-smoothing.jpg

#### Convolution

$$f \ 1 \ 4 \ 2 \ 5 \ g \ 3 \ 4 \ 1 \ c = f * g$$



C[0] = 1\*3 = 3

**C[1]** = 1\*4 + 4\*3 = **16** 

**C[2]** = 1\*1 + 4\*4 + 2\*3 = **23** 

**C[3]** = 4\*1 + 2\*4 + 5\*3 = **27** 

**C[4]** = 2\*1 + 5\*4 = **22** 

**C[5]** = 5\*1 = **5** 

http://toto-share.com

#### Convolution



German stock market index (DAX) on October 20, 2005. Blue: Daily values. Red: Averaged over the last 38 days. Green: Averaged over the last 200 days. Source: http://www.spiegel.de.

## Convolution

$$(g * w)_i := \sum_{k \in \mathbb{Z}} g_{i-k} w_k$$

#### Properties

- Commutativity: f \* g = g \* f.
- Associativity: (f \* g) \* h = f \* (g \* h).
- Distributivity: (f+g)\*h = f\*h + g\*h, f\*(g+h) = f\*g + f\*h.