CS-565 Computer Vision

Nazar Khan PUCIT Lecture 5: Spatial Filtering

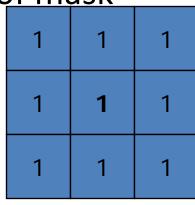
Convolution

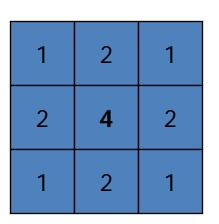
- Convolution implies
 - Spatial filtering
- What is a filter?
 - Something that lets some things pass through and prevents the rest from passing through.
 - Oil filter, Air filter, Noise filter

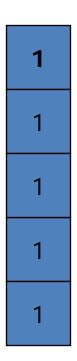
Convolution

- We have seen in Lecture 3 that convolution with an <u>averaging</u> mask yields
 - a smooth version of the input signal
 - by suppressing sharp changes (noise)
- The mask is also called a **filter**. Why?
- Accordingly, convolution is also called **filtering**.
- Convolution with other masks/filters can yield different results
 - Derivative filtering for edge detection.

- Convolution Operation
- Mask
 - Set of pixel positions and weights
 - Origin of mask







- $I_1 \otimes mask = I_2$
- Convention: I₂ is the same size as I₁
- Mask Application:
 - First flip the mask in both dimensions
 - For each pixel p
 - Place mask origin on top of pixel
 - Multiply each mask weight with pixel under it
 - Sum the result and put in location of the pixel *p*

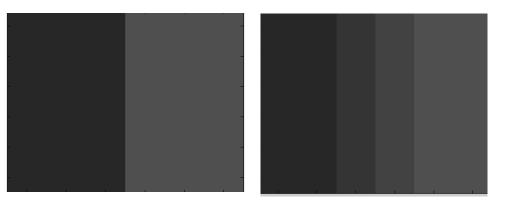
40	40	40	80	80	80
40	40	40	80	80	80
40	1/9 40	1/9 40	1/9	80	80
40	1⁄9	1/9 40	169	80	80
40	1/9 40	1/9 40	1/9	80	80
40	40	40	80	80	80

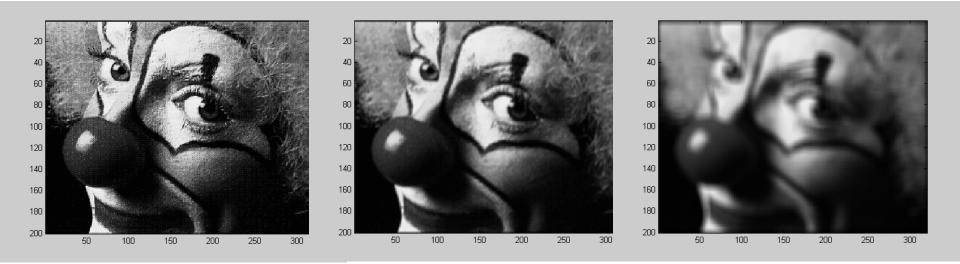
1/9 x	1	1	1
	1	1	1
	1	1	1

$$6^{*}(1/9^{*}40) + 3^{*}(1/9^{*}80) = 53$$

40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80

- Overall effect of this mask?
 - Smoothing filter





Left: Original image. **Middle**: After a convolution with an averaging mask. **Right**: After multiple convolutions with an averaging mask. Author: N. Khan (2014).

What about edge and corner pixels?

- Expand image with virtual pixels
 - Options
 - Fill with a particular value, e.g. zeros
 - Fill with nearest pixel value
 - Mirrored boundary (also called reflecting boundary)
- Fatalism: just ignore them (not recommended)

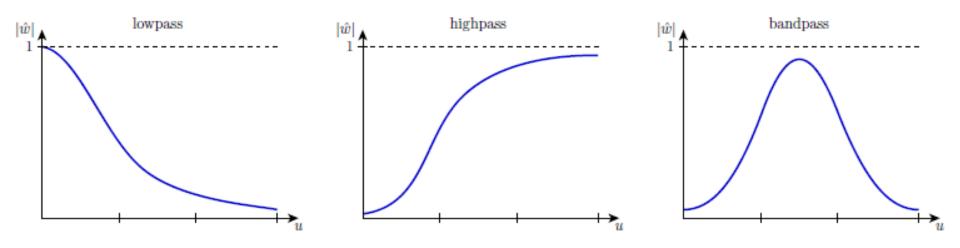
Frequency Interpretation

- Noise is the high frequency component of a signal.
- Convolution with averaging mask is equivalent to reducing the high frequency components of a signal.
- Convolution with Gaussian mask also reduces high frequency components.

Frequency Interpretation

- Lowpass filters
 - Low frequencies are allowed to pass unaffected.
- Highpass filters
 - High frequencies are allowed to pass unaffected.
- Bandpass filters
 - Frequencies within a certain range (band) are allowed to pass unaffected.

Frequency Interpretation



Lowpass:

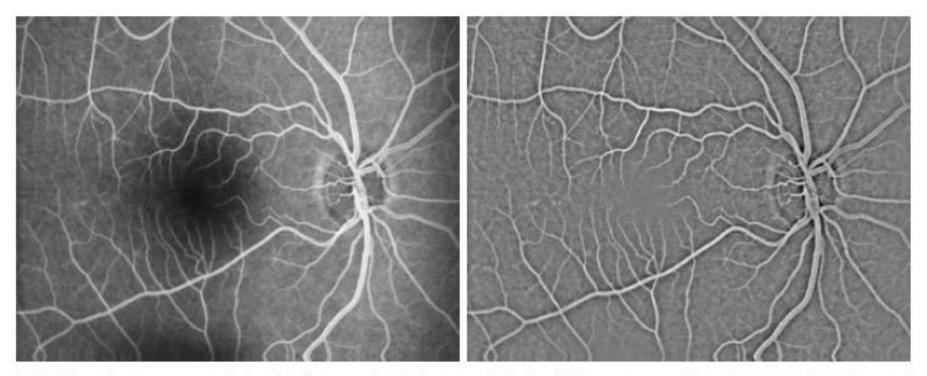
Reduce high frequencies by giving them less weight. Highpass: Reduce low frequencies by giving them less weight.

Bandpass:

Reduce frequencies outside a certain band by giving them less weight.

Highpass Filtering

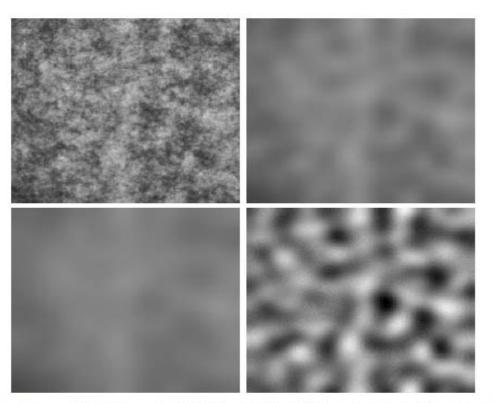
• H=I-Gaussian*I



Left Vessel structure of the background of the eye. Right: Elimination of low-frequent background structures by subtracting a Gaussian-smoothed version from the original image. The greyscale range [-94, 94] has been rescaled to [0, 255] by an affine rescaling. Author: J. Weickert (2002).

Bandpass Filtering

• B=G1*I – G2*I



(a) Top left: Fabric, 257×257 pixels. (b) Top right: After lowpass filtering with a Gaussian with $\sigma = 10$. (c) Bottom left: Lowpass filtering with $\sigma = 15$. (d) Bottom right: Subtracting (b) and (c) gives a bandpass filter that visualises cloudiness on a certain scale. The greyscale range has been affinely rescaled from [-13, 13] to [0, 255]. Author: J. Weickert (2002).

Some Properties of Convolution

- Commutativity
 - $-I^{*}M = M^{*}I$
 - Signal and kernel play an equal role.
- Associativity
 - $-(I^*M_1)^*M_2 = I^*(M_1^*M_2)$
 - Successive convolution with kernels M_1 and M_2 is equivalent to a single convolution with kernel $M_1^*M_2$.

Some Properties of Convolution

- Shift invariance
 - Translation(I*M) = Translation(I)*M
 - Translation of convolved signal is equivalent to convolution with translated signal.
- Linearity
 - -(aI+bJ)*M = a(I*M) + b(J*M) for all $a, b \in \mathbb{R}$
 - Single convolution of a linear combination of signals is equivalent to a linear combination of multiple convolutions.