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The Gaussian Distribution

I The Gaussian distribution for a continuous, multivariate
D-dimensional vector x is given by

N (x|µ,Σ) =
1√

(2π)D |Σ|
exp
{
−1
2
(x− µ)TΣ−1(x− µ)

}
where the D × D matrix Σ is called the covariance matrix
and |Σ| is its determinant.

I Gaussian distribution is intrinsically uni-modal. Its mode is the
same as its mean µ.

I Cannot represent multi-modal data. For that a mixture of
Gaussians can be used.
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Mahalanobis Distance

I The term within the exponent is the so-called
squared-Mahalanobis distance

d(x)2 = (x− µ)TΣ−1(x− µ)

I All x satisfying d(x) = k constitute the k-th iso-surface of
function d(·).

I Iso-surfaces of Mahalanobis distance are iso-surfaces of the
Gaussian density also.
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Σ – The Covariance Matrix

I Covariance matrix Σ is
I Real-valued
I Symmetric
I Positive Definite (all eigenvalues are positive)

I Its eigen-decomposition can be written as

Σ =
D∑
i=1

λiuiuT
i

I Using this eigen-decomposition, its inverse can be written as

Σ−1 =
D∑
i=1

1
λi

uiuT
i
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Σ – The Covariance Matrix

I The eigen-decomposition of Σ−1 can be substituted in the
squared-Mahalanobis distance

d(x)2 = (x− µ)TΣ−1(x− µ) = (x− µ)T
D∑
i=1

1
λi

uiuT
i (x− µ)

=
D∑
i=1

1
λi
(x− µ)TuiuT

i (x− µ) =
D∑
i=1

((x− µ)Tui )
2

λi

I Projection of x− µ onto orthonormal basis u1, . . . ,uD .
I Each projection onto ui is divided by the variance λi along

direction ui .
I Generalization of univariate Gaussian where exponent was

(x−µ)2

σ2 . Now exponent is sum of (xTui−µTui )
2

λi
.
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Σ – The Covariance Matrix

Figure: Elliptical iso-contour of a 2D Gaussian. Center of ellipse is
determined by µ, axes are determined by the eigenvectors of Σ and axes
lengths are determined via the eigenvalues of Σ.
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Σ – The Covariance Matrix

I Covariance matrix Σ can be categorised as
Category Σ (D = 2) DoF Iso-contours (D = 2)

General
( σ2

1 σ1σ2

σ2σ1 σ2
2

) D(D+1)
2

Diagonal
( σ2

1 0
0 σ2

2

)
D

Isotropic σ2I 1
I Diagonal and isotropic cases are easy to work with but cannot

represent data with interesting correlations.
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Central Limit Theorem

I For random variables x1, . . . , xN that belong to any
distribution (non-Gaussian), the sum s = x1 + · · ·+ xN
approaches a Gaussian random variable as N approaches ∞.

I This is known as the Central Limit Theorem.
I This is one reason for the popularity of the Gaussian

distribution.
I Lots of natural phenomena correspond to sums or averages of

many (non-Gaussian) random variables.
I For large enough N, these phenomena can be modelled by

Gaussian distributions.
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Fitting Gaussian density to data

I We have already covered how ML and MAP estimates for
Gaussian density can be obtained.

I For computing log-likelihood of Gaussian, it is sufficient to
pre-compute the following 2 statistics from the data:

I the D × 1 vector
∑N

n=1 xn
I the D × D matrix

∑N
n=1 xnxTn

I These statistics are called sufficient statistics for log-likelihood
of Gaussian. The individual data items can be discarded once
these are computed.
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