CS-567 Machine Learning

Nazar Khan

PUCIT

Lecture 11 The Gaussian Distribution

The Gaussian Distribution

 The Gaussian distribution for a continuous, multivariate D-dimensional vector x is given by

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^{D}|\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

where the $D \times D$ matrix Σ is called the **covariance matrix** and $|\Sigma|$ is its determinant.

- Gaussian distribution is intrinsically uni-modal. Its mode is the same as its mean μ.
- Cannot represent multi-modal data. For that a *mixture of Gaussians* can be used.

Mahalanobis Distance

The term within the exponent is the so-called squared-Mahalanobis distance

$$d(\mathbf{x})^2 = (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

- ► All x satisfying d(x) = k constitute the k-th iso-surface of function d(·).
- Iso-surfaces of Mahalanobis distance are iso-surfaces of the Gaussian density also.

- Covariance matrix ${oldsymbol \Sigma}$ is
 - Real-valued
 - Symmetric
 - Positive Definite (all eigenvalues are positive)
- Its eigen-decomposition can be written as

$$\boldsymbol{\Sigma} = \sum_{i=1}^{D} \lambda_i \mathbf{u}_i \mathbf{u}_i^T$$

Using this eigen-decomposition, its inverse can be written as

$$\mathbf{\Sigma}^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}$$

 \blacktriangleright The eigen-decomposition of Σ^{-1} can be substituted in the squared-Mahalanobis distance

$$d(\mathbf{x})^2 = (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^T \sum_{i=1}^D \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^T (\mathbf{x} - \boldsymbol{\mu})$$
$$= \sum_{i=1}^D \frac{1}{\lambda_i} (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{u}_i \mathbf{u}_i^T (\mathbf{x} - \boldsymbol{\mu}) = \sum_{i=1}^D \frac{((\mathbf{x} - \boldsymbol{\mu})^T \mathbf{u}_i)^2}{\lambda_i}$$

- ▶ Projection of $\mathbf{x} \boldsymbol{\mu}$ onto orthonormal basis $\mathbf{u}_1, \dots, \mathbf{u}_D$.
- Each projection onto u_i is divided by the variance λ_i along direction u_i.
- Generalization of univariate Gaussian where exponent was $\frac{(x-\mu)^2}{\sigma^2}$. Now exponent is sum of $\frac{(x^T\mathbf{u}_i-\mu^T\mathbf{u}_i)^2}{\lambda_i}$.

Figure: Elliptical iso-contour of a 2D Gaussian. Center of ellipse is determined by μ , axes are determined by the eigenvectors of Σ and axes lengths are determined via the eigenvalues of Σ .

 \blacktriangleright Covariance matrix Σ can be categorised as

Category	Σ ($D=2$)	DoF	Iso-contours $(D = 2)$
General	$\begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \\ \sigma_2 \sigma_1 & \sigma_2^2 \end{pmatrix}$	$\frac{D(D+1)}{2}$	
Diagonal	$\left(\begin{smallmatrix}\sigma_1^2 & 0\\ 0 & \sigma_2^2\end{smallmatrix}\right)$	D	
lsotropic	σ^2 I	1	

Diagonal and isotropic cases are easy to work with but cannot represent data with interesting correlations.

Central Limit Theorem

- For random variables x₁,..., x_N that belong to any distribution (non-Gaussian), the sum s = x₁ + ··· + x_N approaches a Gaussian random variable as N approaches ∞.
- ► This is known as the *Central Limit Theorem*.
- This is one reason for the popularity of the Gaussian distribution.
- Lots of natural phenomena correspond to sums or averages of many (non-Gaussian) random variables.
- ► For large enough *N*, these phenomena can be modelled by Gaussian distributions.

Fitting Gaussian density to data

- We have already covered how ML and MAP estimates for Gaussian density can be obtained.
- For computing log-likelihood of Gaussian, it is sufficient to pre-compute the following 2 statistics from the data:
 - the $D \times 1$ vector $\sum_{n=1}^{N} \mathbf{x}_n$
 - the $D \times D$ matrix $\sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T$
- These statistics are called *sufficient statistics* for log-likelihood of Gaussian. The individual data items can be discarded once these are computed.