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Linear Classification Discriminant Functions

Classification

I In the previous topic, regression, the goal was to predict
continuous target variable(s) t given input variables vector x.

I In classification, the goal is to predict discrete target
variable(s) t given input variables vector x.

I Input space is divided into decision regions.
I Boundaries between regions are called decision

boundaries/surfaces.
I Training corresponds to finding optimal decision boundaries

given training data {(x1, t1), . . . , (xN , tN)}.
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Linear Classification Discriminant Functions

Classification

I Assign x to 1-of-K discrete classes Ck .
I Most commonly, the classes are distinct. That is, x is assigned

to one and only one class.
I Convenient coding schemes for targets t are

I 0/1 coding for binary classification.
I 1-of-K coding for multi-class classification. Example, for x

belonging to class 3, the K × 1 target vector will be coded as
t = (0, 0, 1, 0, . . . , 0)T .
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Linear Classification

I Like regression, the simplest classification model is linear
classification.

I This means that the decision surfaces are linear functions of x,
for example y(x,w) = wTx + w0 = 0.

I That is, a linear decision surface is a D − 1 dimensional
hyperplane in D-dimensional space.

I Data in which classes can be separated exactly by linear
decision surfaces is called linearly separable.

Nazar Khan Machine Learning



Linear Classification Discriminant Functions

Linear Classification

Figure: Linearly separable data and corresponding linear decision
boundaries.
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Linear Classification Discriminant Functions

3 Approaches for Solving Classification (Decision) Problems

1. Generative: Infer posterior p(Ck |x)
I either by inferring p(x|Ck) and p(x) and using Bayes’ theorem,
I or by inferring p(x, Ck) and marginalizing.
I Called generative because p(x|Ck) and/or p(x, Ck) allow us to

generate new x’s.
2. Discriminative: Model the posterior p(Ck |x) directly.

I If decision depends on posterior, then no need to model the
joint distribution.

3. Discriminant Function: Just learn a discriminant function
that maps x directly to a class label.

I f(x)=0 for class C1.
I f(x)=1 for class C2.
I No probabilities
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Linear Classification
Generalized Linear Model

I The simplest linear regression model computes continuous
outputs y(x) = wTx + w0.

I By passing these continuous outputs through a non-linear
function f (·), we can obtain discrete class labels.

y(x) = f (wTx + w0)

I This is known as a generalised linear model and f (·) is known
as the activation function.

I Decision surfaces correspond to all inputs x where
y(x) = const. This is equivalent to the condition
wTx + w0 = const.

I Therefore, decision surfaces are linear functions of the input x,
even if f (·) is non-linear.

I As before, we can replace x by a non-linear transformation
φ(x) and learn non-linear boundaries in x-space by learning
linear boundaries in φ-space.
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Linear Discriminant Functions
Two class case

I The simplest linear discriminant function is given by
y(x) = wTx + w0 where w is called the weight vector and w0
is called the bias.

I Classification is performed via the non-linear step

class(x) =

{
C1 if y(x) ≥ 0
C2 if y(x) < 0

I We can view −w0 as a threshold.
I Weight vector w is always orthogonal to the decision surface.

I Proof: For any two points xA and xB on the surface,
y(xA) = y(xB) = 0⇒ wT (xA − xB) = 0. Since vector xA − xB
is along the surface, w must be orthogonal.
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Linear Discriminant Functions
Two class case

Figure: Geometry of linear discriminant function in R2.
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Linear Discriminant Functions
Two class case

I Normal distance of any point x from decision boundary can be
computed as d = y(x)

||w|| .
I Proof:

x = x⊥ + d
w
||w||

⇒wTx + w0︸ ︷︷ ︸
y(x)

= wTx⊥ + w0︸ ︷︷ ︸
y(x⊥)=0

+d wT w
||w||︸ ︷︷ ︸

||w||

⇒d =
y(x)
||w||

I Normal distance to boundary from origin (x = 0) is w0
||w|| .
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Linear Discriminant Functions

I For notational convenience, bias can be included as a
component of the weight vector via

w̃ = (w0,w)

x̃ = (1, x)

y(x) = w̃T x̃
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Linear Discriminant Functions
Multiclass case

I For K class classification with K > 2, we have 3 options
1. Learn K − 1 one-vs-rest binary classifiers.
2. Learn K (K − 1)/2 one-vs-one binary classifiers for every

possible pair of classes. Each point can be classified based on
majority vote among the discriminant functions.

3. Learn K discriminant functions y1, . . . , yK and then
class(x) = argmaxk yk(x).

I Options 1 and 2 lead to ambiguous classification regions.
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Linear Discriminant Functions
Multiclass Ambiguity

Figure: Ambiguity of multiclass classification using two-class linear
discriminant functions.
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Linear Discriminant Functions
Multiclass case

I We can write the K -class discriminant function as

y(x) = ~WT~x

I For learning, we can write the error function as

E (~W) =
1
2

N∑
n=1

||y(xn)− tn||2

=
1
2

N∑
n=1

(~WT~xn − tn)T (~WT~xn − tn)

I The optimal discriminant function parameters can be
computed as ~W∗ = ~X†T where ~X† is the pseudo-inverse of the
design matrix ~X and T is the matrix of target vectors.

I As before, we can also work in φ-space where we will use the
corresponding Φ̃ as the design matrix.
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Linear Discriminant Functions
Least Squares Solution

Figure: Least squares solution is sensitive to outliers.
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Fisher’s Linear Discriminant
Two class case

I Project all data onto a single vector w.
I Classify by thresholding projected coefficents.
I Optimal vector is one which

I maximises between-class distance, and
I minimises within-class distance.

Figure: Fisher’s linear discriminant. Classify by thresholding projections
onto a vector w that maximises inter-class distance and minimises
intra-class distances.
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Fisher’s Linear Discriminant
Two class case

I Let mk =

∑
n∈Ck

xn
Nk

be the mean vector of points belonging to
class Ck .

I Projection of this mean is then mk = wTmk .
I Variance around projected mean can be written as

s2
k =

∑
n∈Ck (w

Txn −wTmk)
2.

I Error of any projection direction w can then be written as

E (w) =
Inter-class variance
Intra-class variance

=
(m2 −m1)

2

s2
1 + s2

2

=
(wTm2 −wTm1)

2∑
n∈C1(w

Txn −wTm1)2 +
∑

n∈C2(w
Txn −wTm2)2
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Fisher’s Linear Discriminant
Two class case

E (w) =
(wT (m2 −m1))(wT (m2 −m1))

T∑2
k=1

∑
n∈Ck (w

T (xn −mk))2

=
wT (m2 −m1)(m2 −m1)

Tw

wT
(∑2

k=1
∑

n∈Ck (xn −mk)(xn −mk)T
)
w

=
wTSBw
wTSWw

(SB and SW are symmetric due to outer-products)

∇wE (w) =
wTSBw∇w(wTSWw)−wTSWw∇w(wTSBw)

(wTSWw)2
(∵ quotient rule)

=
wTSBw(2SWw)−wTSWw(2SBw)

(wTSBw)2
(
∵ ∇v(v

TMv) = (M + MT )v
)

Nazar Khan Machine Learning



Linear Classification Discriminant Functions

Fisher’s Linear Discriminant
Two class case

I Equating gradient to the 0 vector

wTSBw(SWw) = wTSWw(SBw)

I Since we only care about the direction of projection, we can
drop the scalar factors to get

SWw = SBw

SWw = (m2 −m1) (m2 −m1)
Tw︸ ︷︷ ︸

scalar

SWw ∝ (m2 −m1)

w ∝ S−1
W (m2 −m1)
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Perceptron Algorithm

I Perceptron criterion
I To be completed ...
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Gradient Descent

I wnew = wold − η∇w

I Role of learning rate η.
I Batch
I Sequential
I Stochastic
I Local versus global minima.
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