CS-567 Machine Learning

Nazar Khan

PUCIT

Lecture 14 Linear Classification

Classification

- In the previous topic, regression, the goal was to predict continuous target variable(s) t given input variables vector x.
- In classification, the goal is to predict discrete target variable(s) t given input variables vector x.
- Input space is divided into *decision regions*.
- Boundaries between regions are called *decision* boundaries/surfaces.
- ► Training corresponds to finding optimal decision boundaries given training data {(x₁, t₁),..., (x_N, t_N)}.

Classification

- Assign x to 1-of-K discrete classes C_k .
- Most commonly, the classes are distinct. That is, x is assigned to one and only one class.
- Convenient coding schemes for targets t are
 - ▶ 0/1 coding for binary classification.
 - ▶ 1-of-K coding for multi-class classification. Example, for x belonging to class 3, the K × 1 target vector will be coded as t = (0,0,1,0,...,0)^T.

Linear Classification

- Like regression, the simplest classification model is *linear* classification.
 - ► This means that the decision surfaces are linear functions of \mathbf{x} , for example $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x} + w_0 = 0$.
 - ▶ That is, a linear decision surface is a *D* − 1 dimensional hyperplane in *D*-dimensional space.
- Data in which classes can be separated exactly by linear decision surfaces is called linearly separable.

Linear Classification

Figure: Linearly separable data and corresponding linear decision boundaries.

3 Approaches for Solving Classification (Decision) Problems

- **1.** Generative: Infer posterior $p(C_k|\mathbf{x})$
 - either by inferring $p(\mathbf{x}|C_k)$ and $p(\mathbf{x})$ and using Bayes' theorem,
 - or by inferring $p(\mathbf{x}, C_k)$ and marginalizing.
 - ► Called generative because p(x|C_k) and/or p(x, C_k) allow us to generate new x's.
- **2.** Discriminative: Model the posterior $p(C_k|\mathbf{x})$ directly.
 - If decision depends on posterior, then no need to model the joint distribution.
- 3. Discriminant Function: Just learn a discriminant function that maps x directly to a class label.
 - $f(\mathbf{x})=0$ for class C_1 .
 - $f(\mathbf{x})=1$ for class C_2 .
 - No probabilities

Linear Classification Generalized Linear Model

- ► The simplest linear regression model computes continuous outputs y(x) = w^Tx + w₀.
- ► By passing these continuous outputs through a non-linear function f(·), we can obtain discrete class labels.

$$y(\mathbf{x}) = f(\mathbf{w}^T \mathbf{x} + w_0)$$

- ► This is known as a *generalised linear model* and $f(\cdot)$ is known as the *activation function*.
 - Decision surfaces correspond to all inputs **x** where $y(\mathbf{x}) = \text{const.}$ This is equivalent to the condition $\mathbf{w}^T \mathbf{x} + w_0 = \text{const.}$
 - ► Therefore, decision surfaces are linear functions of the input x, even if f(·) is non-linear.
- As before, we can replace x by a non-linear transformation φ(x) and learn non-linear boundaries in x-space by learning linear boundaries in φ-space.

Linear Discriminant Functions Two class case

- The simplest linear discriminant function is given by y(x) = w^Tx + w₀ where w is called the *weight vector* and w₀ is called the *bias*.
- Classification is performed via the non-linear step

$$\mathsf{class}(\mathbf{x}) = \begin{cases} \mathcal{C}_1 & \text{if } y(\mathbf{x}) \ge 0\\ \mathcal{C}_2 & \text{if } y(\mathbf{x}) < 0 \end{cases}$$

- We can view $-w_0$ as a *threshold*.
- ▶ Weight vector **w** is always orthogonal to the decision surface.
 - <u>Proof</u>: For *any* two points \mathbf{x}_A and \mathbf{x}_B on the surface, $y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0 \Rightarrow \mathbf{w}^T(\mathbf{x}_A - \mathbf{x}_B) = 0$. Since vector $\mathbf{x}_A - \mathbf{x}_B$ is along the surface, \mathbf{w} must be orthogonal.

Linear Discriminant Functions Two class case

Figure: Geometry of linear discriminant function in \mathbb{R}^2 .

Machine Learning

Linear Discriminant Functions Two class case

Normal distance of any point x from decision boundary can be computed as d = y(x)/||w||.

► <u>Proof</u>:

$$\mathbf{x} = \mathbf{x}_{\perp} + d \frac{\mathbf{w}}{||\mathbf{w}||}$$

$$\Rightarrow \underbrace{\mathbf{w}^{T} \mathbf{x} + w_{0}}_{y(\mathbf{x})} = \underbrace{\mathbf{w}^{T} \mathbf{x}_{\perp} + w_{0}}_{y(\mathbf{x}_{\perp})=0} + d \underbrace{\mathbf{w}^{T} \frac{\mathbf{w}}{||\mathbf{w}||}}_{||\mathbf{w}||}$$

$$\Rightarrow d = \frac{y(\mathbf{x})}{||\mathbf{w}||}$$

▶ Normal distance to boundary from origin (x = 0) is $\frac{w_0}{||w||}$.

Linear Discriminant Functions

 For notational convenience, bias can be included as a component of the weight vector via

y

$$egin{aligned} & ilde{\mathbf{w}} = (w_0, \mathbf{w}) \ & ilde{\mathbf{x}} = (1, \mathbf{x}) \ & ilde{\mathbf{x}} = ilde{\mathbf{w}}^T ilde{\mathbf{x}} \end{aligned}$$

Linear Discriminant Functions Multiclass case

- For K class classification with K > 2, we have 3 options
 - **1.** Learn K 1 one-vs-rest binary classifiers.
 - 2. Learn K(K-1)/2 one-vs-one binary classifiers for every possible pair of classes. Each point can be classified based on majority vote among the discriminant functions.
 - Learn K discriminant functions y₁,..., y_K and then class(x) = arg max_k y_k(x).
- Options 1 and 2 lead to ambiguous classification regions.

Linear Discriminant Functions Multiclass Ambiguity

Figure: Ambiguity of multiclass classification using two-class linear discriminant functions.

Linear Classification

Linear Discriminant Functions Multiclass case

We can write the K-class discriminant function as

$$\mathsf{y}(\mathsf{x}) = \widetilde{\mathsf{W}}^{\mathsf{T}} \widetilde{\mathsf{x}}$$

► For learning, we can write the error function as

$$\begin{split} \Xi(\widetilde{\mathbf{W}}) &= \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{y}(\mathbf{x}_n) - \mathbf{t}_n||^2 \\ &= \frac{1}{2} \sum_{n=1}^{N} (\widetilde{\mathbf{W}}^T \widetilde{\mathbf{x}}_n - \mathbf{t}_n)^T (\widetilde{\mathbf{W}}^T \widetilde{\mathbf{x}}_n - \mathbf{t}_n) \end{split}$$

- The optimal discriminant function parameters can be computed as W^{*} = X[†]T where X[†] is the pseudo-inverse of the design matrix X and T is the matrix of target vectors.
- As before, we can also work in ϕ -space where we will use the corresponding $\tilde{\Phi}$ as the design matrix.

Linear Discriminant Functions Least Squares Solution

Figure: Least squares solution is sensitive to outliers.

Fisher's Linear Discriminant Two class case

- Project all data onto a single vector w.
- Classify by thresholding projected coefficients.
- Optimal vector is one which
 - maximises between-class distance, and
 - minimises within-class distance.

Figure: Fisher's linear discriminant. Classify by thresholding projections onto a vector \mathbf{w} that maximises inter-class distance and minimises intra-class distances.

Fisher's Linear Discriminant Two class case

- Let $\mathbf{m}_k = \frac{\sum_{n \in C_k} \mathbf{x}_n}{N_k}$ be the mean vector of points belonging to class C_k .
- Projection of this mean is then $m_k = \mathbf{w}^T \mathbf{m}_k$.
- ► Variance around projected mean can be written as $s_k^2 = \sum_{n \in C_k} (\mathbf{w}^T \mathbf{x}_n \mathbf{w}^T \mathbf{m}_k)^2$.
- Error of any projection direction w can then be written as

$$E(\mathbf{w}) = \frac{\text{Inter-class variance}}{\text{Intra-class variance}}$$
$$= \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$
$$= \frac{(\mathbf{w}^T \mathbf{m}_2 - \mathbf{w}^T \mathbf{m}_1)^2}{\sum_{n \in \mathcal{C}_1} (\mathbf{w}^T \mathbf{x}_n - \mathbf{w}^T \mathbf{m}_1)^2 + \sum_{n \in \mathcal{C}_2} (\mathbf{w}^T \mathbf{x}_n - \mathbf{w}^T \mathbf{m}_2)^2}$$

Fisher's Linear Discriminant Two class case

$$\overline{E}(\mathbf{w}) = \frac{(\mathbf{w}^{T}(\mathbf{m}_{2} - \mathbf{m}_{1}))(\mathbf{w}^{T}(\mathbf{m}_{2} - \mathbf{m}_{1}))^{T}}{\sum_{k=1}^{2} \sum_{n \in \mathcal{C}_{k}} (\mathbf{w}^{T}(\mathbf{x}_{n} - \mathbf{m}_{k}))^{2}}$$

$$= \frac{\mathbf{w}^{T}(\mathbf{m}_{2} - \mathbf{m}_{1})(\mathbf{m}_{2} - \mathbf{m}_{1})^{T}\mathbf{w}}{\mathbf{w}^{T}(\sum_{k=1}^{2} \sum_{n \in \mathcal{C}_{k}} (\mathbf{x}_{n} - \mathbf{m}_{k})(\mathbf{x}_{n} - \mathbf{m}_{k})^{T})\mathbf{w}}$$

$$= \frac{\mathbf{w}^{T}\mathbf{S}_{B}\mathbf{w}}{\mathbf{w}^{T}\mathbf{S}_{W}\mathbf{w}} \quad (\mathbf{S}_{B} \text{ and } \mathbf{S}_{W} \text{ are symmetric due to outer-products})$$

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w} \nabla_{\mathbf{w}} (\mathbf{w}^T \mathbf{S}_W \mathbf{w}) - \mathbf{w}^T \mathbf{S}_W \mathbf{w} \nabla_{\mathbf{w}} (\mathbf{w}^T \mathbf{S}_B \mathbf{w})}{(\mathbf{w}^T \mathbf{S}_W \mathbf{w})^2} \quad (\because \text{ quotient rule})$$
$$= \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w} (2\mathbf{S}_W \mathbf{w}) - \mathbf{w}^T \mathbf{S}_W \mathbf{w} (2\mathbf{S}_B \mathbf{w})}{(\mathbf{w}^T \mathbf{S}_B \mathbf{w})^2} \quad (\because \nabla_{\mathbf{v}} (\mathbf{v}^T \mathbf{M} \mathbf{v}) = (\mathbf{M} + \mathbf{M}^T) \mathbf{v})$$

Linear Classification

Fisher's Linear Discriminant Two class case

Equating gradient to the 0 vector

$$\mathbf{w}^T \mathbf{S}_B \mathbf{w} (\mathbf{S}_W \mathbf{w}) = \mathbf{w}^T \mathbf{S}_W \mathbf{w} (\mathbf{S}_B \mathbf{w})$$

Since we only care about the direction of projection, we can drop the scalar factors to get

$$\begin{split} \mathbf{S}_W \mathbf{w} &= \mathbf{S}_B \mathbf{w} \\ \mathbf{S}_W \mathbf{w} &= (\mathbf{m}_2 - \mathbf{m}_1) \underbrace{(\mathbf{m}_2 - \mathbf{m}_1)^T \mathbf{w}}_{\text{scalar}} \\ \mathbf{S}_W \mathbf{w} &\propto (\mathbf{m}_2 - \mathbf{m}_1) \\ \mathbf{w} &\propto \mathbf{S}_W^{-1} (\mathbf{m}_2 - \mathbf{m}_1) \end{split}$$

Perceptron Algorithm

- Perceptron criterion
- ► To be completed ...

Gradient Descent

•
$$\mathbf{w}^{\mathsf{new}} = \mathbf{w}^{\mathsf{old}} - \eta \nabla_{\mathbf{w}}$$

- Role of learning rate η .
- Batch
- Sequential
- Stochastic
- Local versus global minima.