CS-465 Computer Vision

Nazar Khan

PUCIT

11. Camera Geometry

Camera

- ► A camera projects 3D world points to 2D pixel coordinates.
- In projective space, it is a mapping from \mathbb{P}^3 to \mathbb{P}^2 .
- \triangleright The whole process of going from 3D world coordinates X to 2D image pixel coordinates x can be encoded in a 3×4 camera projection matrix P

$$x = PX$$

where x is the 2D pixel location of the 3D world point X when projected by camera P.

Nazar Khan Computer Vision 2/11 Pinhole Camera Anatomy of P

Pinhole Camera

Figure: Pinhole camera with light passing through tiny aperture. Source: Wikipedia

Nazar Khan Computer Vision 3/11

Pinhole Camera Model

Nazar Khan Computer Vision 4/11

Pinhole Camera Anatomy of P

Virtual Image Plane

Pinhole camera model with virtual image plane in front of the focal plane. Author: M. Mainberger (2010).

Nazar Khan Computer Vision 5/11

Camera Projection Equations

$$x = \frac{fX}{Z}$$
 and $y = \frac{fY}{Z}$

Nazar Khan Computer Vision 6/11 Pinhole Camera Anatomy of P

World Coordinates to Camera Coordinates

Figure: Any 3D location M has different representations in different coordinate systems. The camera center C itself is a 3D location represented in a world coordinate system. Author: N. Khan (2018)

Nazar Khan Computer Vision 7/11

Extrinsic

Intrinsic

The intrinsic camera parameters describe the transition from the ideal image coordinates $(x,y)^{ op}$ to the real (pixel) coordinates $(u, v)^{T}$. Author: M. Mainberger (2010).

Computer Vision 9/11

Camera Matrix

A 3D point in homogeneous world coordinates $(X_w, Y_w, Z_w, 1)^T$ is mapped to a 2D image point with homogeneous pixel coordinates $(u, v, w)^T$ as

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \underbrace{\begin{pmatrix} h_{u} & -h_{u} \cot \theta & u_{0} \\ 0 & h_{v} / \sin \theta & v_{0} \\ 0 & 0 & 1 \end{pmatrix}}_{\text{intrinsic}} \underbrace{\begin{pmatrix} f_{x} & 0 & 0 & 0 \\ 0 & f_{y} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{\text{projection}} \underbrace{\begin{pmatrix} r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{extrinsic}} \begin{pmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{pmatrix}$$

$$= \underbrace{\begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{pmatrix}}_{\text{full projection matrix}} \begin{pmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{pmatrix}$$

▶ 12 parameters in total but with 1 free scaling parameter. So 11 degrees of freedom: 6 extrinsic plus 5 intrinsic.

Nazar Khan Computer Vision 10 / 11

nole Camera Anatomy of P

Anatomy of P

To be completed . . .

Nazar Khan Computer Vision 11/11