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Vector Calculus

Notation

v

Scalars are denoted by lower-case letters like s, a, b.

» Vectors are denoted by lower-case bold letters like x,y, v.

v

Matrices are denoted by upper-case bold letters like M, D, A.

» Any vector x € R is by default a column vector.

X1
X2
X =
Xd
» The corresponding row vector is obtained as
T _
X = [Xl X2 ... Xd].
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Vector Calculus

Vectors

For vectors x,y € R and z € R¥

» Inner product xTy = x1y1 + xoy2 + - - 4+ Xgyq is a scalar value.
Also called dot product or scalar product.

» Other representations: x -y, (x,y) and < x,y >.

» Represents similarity of vectors.

» If xTy =0, then x and y are orthogonal vectors (in 2D, this means
they are perpendicular).

» Euclidean norm of vector

HXH =VxTx = \/X1X1 + XoX2 + -+ + XgXd

represents the magnitude of the vector.
» Unit vector has norm 1. Also called normalised vector.
» If |x|| =1 and |ly|| =1, and x"y = 0, then x and y are
orthonormal vectors.

» Outer-product xz" is a d x k matrix.
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Vector Calculus

Matrix and Vector Calculus
For vector x € RY, scalar function f(x) and vector function g(x) € R¥

» The gradient operator % is also written as Vy or simply V when

the differentiation variable is implied.

9 BBf(X)
% oF(x)
> V= | 22| so that Vi(f(x)) = Z(f(x)) = | 72
é 8f.
Oxq ag)
Og1(x)  9g2(x) 9gk(x)
Ox: Ox: te 3%
onl) omb) a%k(‘x)
> Vu(g(x) = (g(x)) = . c .
dar(x) Oe(x) Oge(x)
Oxy4 Oxy4 T OXy
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Vector Calculus

Matrix and Vector Calculus

For vectors x,y € R and matrices M € R¥*? and A € R9*d

> Vx(y™x) = Vx(xTy) =y
> Vi(Mx) =MT
> Vi(xTAx) = (A +AT)x

» For symmetric A, Vyx(xT Ax) = 2Ax
Take-home Quiz 1: Prove all of the derivatives given above.
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Eigenvectors

Matrices as linear operators

» |n a matrix transformation Mx, components of x are acted upon in
a linear fashion.

myy miz| (X1| _ |mMiix1 + mxo
mp1 myp| | X2 ma1X1 + M2X2
» Every matrix multiplication represents a linear transformation.

» Every linear transformation can be represented as a matrix
multiplication.
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Eigenvectors

Eigenvectors

» When a matrix M is multiplied with a vector v, the vector is
linearly transformed.
» Rotation/Shearing/Scaling
» Scaling does not change the direction of the vector.

» If vector Mv is only a scaled version of v, then v is called an
eigenvector of M.
» That is, if v is an eigenvector of M then

Mv = \v

where scaling factor X is also called the eigenvalue of M
corresponding to eigenvector v.

Mv Mv

Mv

Not an eigenvector Eigenvector Eigenvector
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Optimization

Constrained Optimization

» For optimizing a function f(x), the gradient of f must vanish at
the optimizer x*.
Vi« =0

» For optimizing a function f(x) subject to some constraint
g(x) = 0, the gradient of the so-called Lagrange function

L(x,A) = f(x) + Ag(x)
must vanish at the optimizer x*. That is,
VL(x,A\) = Vf|xx + AVg|x» =0

where X is the Lagrange (or undetermined) multiplier.

Nazar Khan Computer Vision 8/14



Optimization

Constrained Optimization

» Quite often, we will need to maximize x” Mx with respect to x
where M is a symmetric, positive definite matrix.

» Trivial solution: x = inf

» To prevent trivial solution, we must constrain the norm of x. For
example, x'x = 1.

» Lagrangian becomes L(x, \) = x” Mx + A\(1 — x"x)
» Use VxL|x» =0 and V,L|y+ = 0 to solve for optimal x*.
» For minimizing x” Mx wrt x, L(x,A) = x"Mx — A\(1 — x"x).

Take-home Quiz 1: Show that the non-trivial maximizer of x " Mx
is the eigenvector of M corresponding to the largest eigenvalue.
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Optimization

Singular Value Decomposition

v

Any rectangular m x n matrix A with real values can be
decomposed as A = UDV T where

» U is an m x m orthogonal matrix (U"U = 1,,)

» Vis an n x n orthogonal matrix (VTV =1,) and

» D is an m x n diagonal matrix

v

Columns of U are orthonormal eigenvectors of AAT .

v

Columns of V are orthonormal eigenvectors of ATA.

v

Diagonal of D contains the square roots of eigenvalues from U or
V in descending order.

» D13 > Dy > ...D,.

» Also called the singular values of A.
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Taylor Series

Taylor Series Approximation

» If values of a function f(a) and its derivatives f'(a), f"(a),... are
known at a value a, then we can approximate f(x) for x close to a
via the Taylor series expansion

f(x) ~ f(a)—l—(x—a)l f’(a)+(X_a)2 f”(a)—i—(x—a)3 f”;(!a)

1! 2! +0((x=a)")

» For example, for x around a =0
o 3 5 7
»sin(x)~x -G+ 5 -5+
1 2 3 4
N B o S T T S T S

> |t is often convenient to use the first-order Taylor expansion

f(x) =~ f(a) + (x — a)f'(a)
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Taylor Series

Taylor Series Approximation
Not very useful for x not close to a

—o— sin(x)
—=—3rd order approx. at 0
—e— 7th order approx. at 0

Figure: The sin() function (blue) is closely approximated around 0 by its
Taylor polynomials. The 7th order approximation is good for a full period
centered at 0. However, it becomes poor for [x — 0| > 7.
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Image Coordinates

Image Coordinates

Cartesian axis Image axis
y axis ¥ 5
6 _ o
X axis X axis /

+ve x-axis from left to right. +ve x-axis goes downwards.
+ve y-axis goes upwards. +ve y-axis from left to right.

For both coordinate systems, angles are always measured in
counter-clockwise direction from positive x-axis.
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Image Coordinates

Image Coordinates

y axis y axis

D

X axis X axis

Rotate by 90° anticlockwise

By rotating the axis, the mathematics on the image axes will
remain the same as for the Cartesian axes. For example, a
line in the image can still be represented via y = mx + ¢ and

slope m = tané.
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