
CS-465 Computer Vision

Nazar Khan

PUCIT

2. Background Mathematics



Vector Calculus Eigenvectors Optimization Taylor Series Image Coordinates

Notation

I Scalars are denoted by lower-case letters like s, a, b.
I Vectors are denoted by lower-case bold letters like x, y, v.
I Matrices are denoted by upper-case bold letters like M,D,A.
I Any vector x ∈ Rd is by default a column vector.

x =


x1
x2
...
xd


I The corresponding row vector is obtained as

xT =
[
x1 x2 . . . xd

]
.
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Vectors

For vectors x, y ∈ Rd and z ∈ Rk

I Inner product xTy = x1y1 + x2y2 + · · ·+ xdyd is a scalar value.
Also called dot product or scalar product.

I Other representations: x · y, (x, y) and < x, y >.
I Represents similarity of vectors.

I If xTy = 0, then x and y are orthogonal vectors (in 2D, this means
they are perpendicular).

I Euclidean norm of vector

‖x‖ =
√

xTx =
√
x1x1 + x2x2 + · · ·+ xdxd

represents the magnitude of the vector.
I Unit vector has norm 1. Also called normalised vector.
I If ‖x‖ = 1 and ‖y‖ = 1, and xTy = 0, then x and y are

orthonormal vectors.
I Outer-product xzT is a d × k matrix.
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Matrix and Vector Calculus

For vector x ∈ Rd , scalar function f (x) and vector function g(x) ∈ Rk

I The gradient operator d
dx is also written as ∇x or simply ∇ when

the differentiation variable is implied.

I ∇x =


∂
∂x1
∂
∂x2
...
∂
∂xd

 so that ∇x(f (x)) = d
dx(f (x)) =


∂f (x)
∂x1
∂f (x)
∂x2
...

∂f (x)
∂xd



I ∇x(g(x)) = d
dx(g(x)) =


∂g1(x)
∂x1

∂g2(x)
∂x1

. . . ∂gk (x)
∂x1

∂g1(x)
∂x2

∂g2(x)
∂x2

. . . ∂gk (x)
∂x2

...
...

. . .
...

∂g1(x)
∂xd

∂g2(x)
∂xd

. . . ∂gk (x)
∂xd


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Matrix and Vector Calculus

For vectors x, y ∈ Rd and matrices M ∈ Rk×d and A ∈ Rd×d

I ∇x(yTx) = ∇x(xTy) = y
I ∇x(Mx) = MT

I ∇x(xTAx) = (A + AT )x
I For symmetric A, ∇x(xTAx) = 2Ax

Take-home Quiz 1: Prove all of the derivatives given above.
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Matrices as linear operators

I In a matrix transformation Mx, components of x are acted upon in
a linear fashion.[

m11 m12
m21 m22

] [
x1
x2

]
=

[
m11x1 +m12x2
m21x1 +m22x2

]
I Every matrix multiplication represents a linear transformation.
I Every linear transformation can be represented as a matrix

multiplication.
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Eigenvectors

I When a matrix M is multiplied with a vector v, the vector is
linearly transformed.

I Rotation/Shearing/Scaling
I Scaling does not change the direction of the vector.

I If vector Mv is only a scaled version of v, then v is called an
eigenvector of M.

I That is, if v is an eigenvector of M then

Mv = λv

where scaling factor λ is also called the eigenvalue of M
corresponding to eigenvector v.

v
Mv

v
Mv

v

Mv

Not an eigenvector Eigenvector Eigenvector
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Constrained Optimization

I For optimizing a function f (x), the gradient of f must vanish at
the optimizer x∗.

∇f |x∗ = 0

I For optimizing a function f (x) subject to some constraint
g(x) = 0, the gradient of the so-called Lagrange function

L(x, λ) = f (x) + λg(x)

must vanish at the optimizer x∗. That is,

∇L(x, λ) = ∇f |x∗ + λ∇g |x∗ = 0

where λ is the Lagrange (or undetermined) multiplier.
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Constrained Optimization

I Quite often, we will need to maximize xTMx with respect to x
where M is a symmetric, positive definite matrix.

I Trivial solution: x = inf

I To prevent trivial solution, we must constrain the norm of x. For
example, xTx = 1.

I Lagrangian becomes L(x, λ) = xTMx + λ(1− xTx)
I Use ∇xL|x∗ = 0 and ∇λL|λ∗ = 0 to solve for optimal x∗.
I For minimizing xTMx wrt x, L(x, λ) = xTMx− λ(1− xTx).

Take-home Quiz 1: Show that the non-trivial maximizer of xTMx
is the eigenvector of M corresponding to the largest eigenvalue.
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Singular Value Decomposition

I Any rectangular m × n matrix A with real values can be
decomposed as A = UDVT where

I U is an m ×m orthogonal matrix (UTU = Im)
I V is an n × n orthogonal matrix (VTV = In) and
I D is an m × n diagonal matrix

I Columns of U are orthonormal eigenvectors of AAT .
I Columns of V are orthonormal eigenvectors of ATA.
I Diagonal of D contains the square roots of eigenvalues from U or

V in descending order.
I D11 ≥ D22 ≥ . . .Dn.
I Also called the singular values of A.
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Taylor Series Approximation

I If values of a function f (a) and its derivatives f ′(a), f ′′(a), . . . are
known at a value a, then we can approximate f (x) for x close to a
via the Taylor series expansion

f (x) ≈ f (a)+(x−a)1 f
′(a)

1!
+(x−a)2 f

′′(a)

2!
+(x−a)3 f

′′′(a)

3!
+O((x−a)4)

I For example, for x around a = 0
I sin(x) ≈ x − x3

3! +
x5

5! −
x7

7! + . . .

I ex ≈ 1 + x1

1! +
x2

2! +
x3

3! +
x4

4! + . . .

I It is often convenient to use the first-order Taylor expansion

f (x) ≈ f (a) + (x − a)f ′(a)
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Taylor Series Approximation
Not very useful for x not close to a

−5 5

−4

−2

2

4
sin(x)

3rd order approx. at 0
7th order approx. at 0

Figure: The sin() function (blue) is closely approximated around 0 by its
Taylor polynomials. The 7th order approximation is good for a full period
centered at 0. However, it becomes poor for |x − 0| > π.
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Image Coordinates

Cartesian axis Image axis

x axis

y axis
v

θ

y axis

x axis vθ

+ve x-axis from left to right. +ve x-axis goes downwards.
+ve y-axis goes upwards. +ve y-axis from left to right.

For both coordinate systems, angles are always measured in
counter-clockwise direction from positive x-axis.
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Image Coordinates

y axis

x axis

v

θ

x axis

y axis

v

θ

Rotate by 90◦ anticlockwise

By rotating the axis, the mathematics on the image axes will
remain the same as for the Cartesian axes. For example, a
line in the image can still be represented via y = mx + c and
slope m = tan θ.
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